Department of Mechanical Engineering, Biomedical and Environmental Health Sciences, University of California, Berkeley, CA, U.S.A.
Abstract:
Reliability of closed life support systems will depend on their ability to continue supplying the crew's needs in the face of perturbations and equipment failures. These dynamic considerations interact with the basic static (equilibrium) design through the sizing of storages, the specification of excess capacities in processors, and the choice of system initial state (total mass in the system). This paper uses a very simple system flow model to examine the possibilities for system failures even when there is sufficient storage to buffer the immediate effects of the perturbation. Two control schemes are shown which have different dynamic consequences in response to component failures.