首页 | 本学科首页   官方微博 | 高级检索  
     


Possible shock wave in the local interstellar plasma, very close to the heliosphere
Authors:S. Grzedzielski  R. Lallement
Affiliation:(1) Service d' Aéronomie du CNRS, B.P. No. 3, F-91371 Verrieres-le-Buisson, France;(2) Space Research Centre, Polish Academy of Sciences, Bartycka 18A, 00-716 Warsaw, Poland;(3) Service d' Aéronomie du CNRS, B.P. No. 3, F-91371 Verrieres-le-Buisson, France
Abstract:
We show, using the HST — GHRS data on velocity and temperature in the nearby interstellar medium, that the observed 3 – 4 km s–1 relative velocity between the Local Interstellar Cloud (LIC) and the so-called G-cloud located in the Galactic Center hemisphere can be quite naturally explained assuming that the two clouds do interact with each other. In the proposed interpretation the two media are separated by a (quasiperpendicular) MHD shock front propagating from the LIC into the G-cloud. The LIC plasma is then nothing else but the shocked (compression 1.3 – 1.4) gas of the G-cloud. A 1-D single-fluid solution of the Rankine — Hugoniot equations can fit the most probable observed values of the relative velocity (3.75 km/s), LIC (6700 K) and G-cloud (5400 K) kinetic temperatures, if the plasma-beta of the LIC plasma is in the range 1.3 – 1.5 (Table 1). This corresponds to a super — fast magnetosonic motion of the heliosphere through the LIC, independently of LIC density. The LIC magnetic field strength is 1.9 (3.1) mgrG for the LIC electron density ne = 0.04 (0.10) cm–3. In this case the shock is less than 30 000 AU away and moves at about 10 km s–1 relative to the LIC plasma. The Sun is chasing the shock and should catch up with it in about 104 years. If the heliospheric VLP emissions cutoff at 1.8 kHz is indicative of ne (LIC) = 0.04 cm–3 (Gurnett et al., 1993), the (pure plasma) bowshock ahead of the heliopause could be the source of quasi-continuous heliospheric 2-kHz emission band. We believe that with the expected increase in the performance of modern spectroscopic instrumentation the proposed method of magnetic field evaluation may in the future find wider application in the studies of the interstellar medium.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号