基于模糊神经网络的涡结构识别方法研究 |
| |
作者姓名: | 杨照华 房建成 吴琳 |
| |
作者单位: | 北京航空航天大学仪器科学与光电工程学院,北京,100083 |
| |
基金项目: | 国家重点基础研究发展计划(973计划) |
| |
摘 要: | 研究气动光学传输效应产生的机理是红外成像末制导的共性基础技术之一,基于涡结构对光学传输效应进行建模是一种非常有效的方法,而涡结构的识别是其必要前提。文中提出一种新的涡结构识别方法,把折射率场经小波变换后的系数矩阵等效为具有一定纹理结构的图像,计算图像的共生矩阵及其统计量,由于涡结构模式复杂,特征量较多,设计了等价结构的模糊神经网络进行涡结构识别。与小波分解后直接提取特征量的识别方法相比,本文的方法从空、频角度更加准确全面地表征湍流涡结构模式,计算机仿真结果表明该方法优于神经网络的识别效率。
|
关 键 词: | 气动光学 涡结构 小波变换 共生矩阵 模糊神经网络 |
文章编号: | 1006-3242(2006)05-0004-06 |
修稿时间: | 2006-05-16 |
本文献已被 CNKI 万方数据 等数据库收录! |
|