摘 要: | 为了提高航空发动机工作状态识别准确率和效率,避免人工识别中存在的误判和耗时耗力问题,提出了基于混沌脉冲蝙蝠算法(CRBA)优化的多核支持向量数据描述(CRBA-MKSVDD)智能识别方法。研究了多核支持向量数据描述(MKSVDD)改进策略,引入混沌脉冲发射率提高了蝙蝠算法(BA)的收敛速度和收敛精度,得到了CRBA;通过CRBA优化MKSVDD的惩罚因子和核参数,同时对飞参数据进行了特征提取;基于特征飞参数据训练了CRBA-MKSVDD分类器,并对某型发动机一个飞行架次的工作状态进行了识别。结果表明,该方法识别准确率达到97.547 9%,可用于与发动机工作状态的相关研究和应用。
|