A capillary-driven root module for plant growth in microgravity. |
| |
Authors: | S B Jones D Or |
| |
Affiliation: | Department of Plants, Soils, and Biometeorology, Utah State University, Logan 84322-4820, USA. |
| |
Abstract: | A new capillary-driven root module design for growing plants in microgravity was developed which requires minimal external control. Unlike existing systems, the water supply to the capillary-driven system is passive and relies on root uptake and media properties to develop driving gradients which operate a suction-induced flow control valve. A collapsible reservoir supplies water to the porous membrane which functions to maintain hydraulic continuity. Sheet and tubular membranes consisting of nylon, polyester and sintered porous stainless steel were tested. While finer pore sized membranes allow greater range of operation, they also reduce liquid flux thereby constraining system efficiency. Membrane selection should consider both the maximum anticipated liquid uptake rate and maximum operating matric head (suction) of the system. Matching growth media water retention characteristics to the porous membrane characteristics is essential for supplying adequate liquid flux and gas exchange. A minimum of 10% air-filled porosity (AFP) was necessary for adequate aeration. The capillary-driven module maintained hydraulic continuity and proper gas exchange rates for more than 80 days in a plant growth experiment. |
| |
Keywords: | |
|
|