首页 | 本学科首页   官方微博 | 高级检索  
     

基于激波风洞的超声速磁流体动力技术实验系统
引用本文:李益文,李应红,张百灵,金迪,陈峰,朱涛. 基于激波风洞的超声速磁流体动力技术实验系统[J]. 航空学报, 2011, 32(6): 1015-1024. DOI: 11-1929/V.20110427.1600.002
作者姓名:李益文  李应红  张百灵  金迪  陈峰  朱涛
作者单位:空军工程大学航空等离子体动力学实验室,陕西西安,710038
基金项目:国家自然科学基金,空军工程大学研究生科技创新基金
摘    要:
开展磁流体(MHD)动力技术实验研究,实验系统必须满足两项基本的条件:一是超声速或高超声速气流;二是气流必须是导电流体.基于此,介绍了基于激波风洞的超声速磁流体动力技术实验系统的基本组成、设计思想和调试情况.设计了马赫数Ma=2的超声速喷管及实验段;采用氦气驱动氩气,在平衡接触面运行方式下得到高温气体,通过在低压段注入...

关 键 词:激波风洞  超声速  磁流体  电导率  磁作用数
收稿时间:2010-11-03;

Supersonic Magnetohydrodynamic Technical Experimental System Based on Shock Tunnel
LI Yiwen,LI Yinghong,ZHANG Bailing,JIN Di,CHEN Feng,ZHU Tao. Supersonic Magnetohydrodynamic Technical Experimental System Based on Shock Tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1015-1024. DOI: 11-1929/V.20110427.1600.002
Authors:LI Yiwen  LI Yinghong  ZHANG Bailing  JIN Di  CHEN Feng  ZHU Tao
Affiliation:Aero-Plasma-Dynamic Laboratory,Air Force Engineering University,Xi’an 710038,China
Abstract:
In order to perform magenetohydrodynamic (MHD) technical experiments, the experimental system needs to meet the following two conditions: one is supersonic or hypersonic flow; the other is that the flow must be conductivity. In this paper, basic composition, design methods, and debugging situation of a supersonic MHD technical experimental system based on shock tunnel are introduced. Mach number Ma=2 supersonic nozzle and testing section are designed; helium is used to drive argon gas, equilibrium contact surface operating mode is used for getting high temperature gas, and the conductive gas is obtained by adding ionization seed K2CO3 powder to the driven section. The following results are obtained: the effective testing time is about 9 ms by adjusting the length of driver section and driven section; the temperature in the 5th zone reaches over 3 500 K; due to short-time running, cooling problem of the nozzle and working section can be ignored; the conductivity of Ma=2 supersonic flow is 40 S/m, the magnetic interaction parameter Q is 0.174 under the conditions of p1=3 kPa, L=0.2 m and B=2.0 T realized by electromagnet, while Q is 0.164 when p1=1 kPa, L=1 m and B=0.5 T using permanent magnet. This experimental system could be used to perform preliminary experimental researches such as MHD flow control, MHD power generation and MHD acceleration.
Keywords:shock tunnel  supersonic  magnetohydrodynamic  conductivity  magnetic interaction parameter
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号