首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的一类不确定非线性系统自适应H∞控制
引用本文:姜长生,陈谋. 基于RBF神经网络的一类不确定非线性系统自适应H∞控制[J]. 中国航空学报, 2003, 16(1): 36-41. DOI: 10.1016/S1000-9361(11)60168-4
作者姓名:姜长生  陈谋
作者单位:Automation College,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
基金项目:Nation Natural Science F oundation of China(60 1740 45 ),Aeronautical Science F oundation of China(0 1D5 2 0 2 5 )
摘    要:基于RBF神经网络提出了一种H∞自适应控制方法。控制器由等效控制器和H∞控制器两部分组成。用RBF神经网络逼近非线性函数,并把逼近误差引入到网络权值的自适应律中用以改善系统的动态性能。H^∞控制器用于减弱外部及神经网络的逼近误差对跟踪的影响。所设计的控制器不仅保证了闭环系统的稳定性,而且使外部干扰及神经网络的逼近误差对跟踪的影响减小到给定的性能指标。最后给出的算例验证了该方法的有效性。

关 键 词:RBF神经网络 不确定非线性系统 H^∞控制器 自适应控制
收稿时间:2002-06-25

Adaptive H∞ Control of Nonlinear Systems with Neural Networks
JIANG Chang-sheng,CHEN Mou. Adaptive H∞ Control of Nonlinear Systems with Neural Networks[J]. Chinese Journal of Aeronautics, 2003, 16(1): 36-41. DOI: 10.1016/S1000-9361(11)60168-4
Authors:JIANG Chang-sheng  CHEN Mou
Affiliation:Automaton College, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:The discussion is devoted to the adaptive H∞ control method based on RBF neural networks for uncertain nonlinear systems in this paper. The controller consists of an equivalent controller and an H∞ controller. The RBF neural networks are used to approximate the nonlinear functions and the approximation errors of the neural networks are used in the adaptive law to improve the performance of the systems. The H∞ controller is designed for attenuating the influence of external disturbance and neural network approximation errors. The controller can not only guarantee stability of the nonlinear systems, but also attenuate the effect of the external disturbance and neural networks approximation errors to reach performance indexes. Finally, an example validates the effectiveness of this method.
Keywords:neural networks  nonlinear systems  adaptive control
本文献已被 CNKI 维普 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号