首页 | 本学科首页   官方微博 | 高级检索  
     

基于图论分割的多光谱图像非监督分类方法
引用本文:刘娜娜,李景文,李宁. 基于图论分割的多光谱图像非监督分类方法[J]. 北京航空航天大学学报, 2009, 35(5): 544-546
作者姓名:刘娜娜  李景文  李宁
作者单位:北京航空航天大学电子信息工程学院,北京,100191;北京航空航天大学软件开发环境国家重点实验室,北京,100191
摘    要:
针对传统基于像素的多光谱遥感图像分类方法存在的"麻点"现象、采样成本高等问题,提出了一种基于图论分割的非监督分类方法,首先采用基于图论的分割算法,按局部邻近相似像素点分割成若干子区域,再以分割后子区域为基本单元,整体进行模糊 C均值聚类,最终实现对多光谱图像的非监督分类.实验证明,该方法结合了局部邻近像素点的相互关系以及相似区域的整体特征,有效解决了麻点问题,具有较高的分类精度和算法效率,降低了采样成本.

关 键 词:多光谱图像  多光谱图像分类  非监督分类
收稿时间:2008-08-10

Unsupervised classification approach based on graph-segment for multispectral remote sensing images
Liu Nana,Li Jingwen,Li Ning. Unsupervised classification approach based on graph-segment for multispectral remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 544-546
Authors:Liu Nana  Li Jingwen  Li Ning
Affiliation:1. School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. State Key Laboratory of Software Development Environment , Beijing University of Aeronautics and Astronautics,Beijing 100191, China
Abstract:
To solving the noisy points and high cost problems of pixel-based multispectral image classification,a hybrid unsupervised approach with graph-based segment and fuzzy c-means clustering was presented.First,based on the relationships among neighboring pixels,image was segmented into groups of sub-regions using the graph-based algorithm.Then according to the global feature vector of sub-region,the fuzzy c-means classifier was used to obtain the classification map.Experiments turn out that the proposed approac...
Keywords:multispectral image  multispectral classification  unsupervised classification  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号