首页 | 本学科首页   官方微博 | 高级检索  
     

基于互信息的输入变量选择算法综述
引用本文:李香祯,石晟玮,殷小强,刘帅,谢晓丹. 基于互信息的输入变量选择算法综述[J]. 南京航空航天大学学报, 2018, 50(S2): 6-12
作者姓名:李香祯  石晟玮  殷小强  刘帅  谢晓丹
作者单位:1. 光学辐射重点实验室, 北京, 100854;2. 北京跟踪与通信技术研究所, 北京, 100094;;3. 北京致生联发信息技术股份有限公司, 北京, 100000;4. 66132 部队, 北京, 100083
摘    要:空间环境是空间态势感知的重要组成部分,在空间科学领域,受限于对日地系统物理规律的全面认知,现有的基于物理机制的空间环境预测模型目前还难以实用化,通常采用的多是基于数据的经验类模型。基于互信息的输入变量选择算法为空间环境要素预测模型的输入确定了思路。由于能充分考虑不同输入、输入与输出之间的潜在关系,基于互信息的输入变量选择算法近年来在回归及分类问题上得到了广泛的应用和发展。本文以输入变量选择算法的3个关键环节,即评价标准、搜索策略和停止准则为线索,从不同角度对基于互信息的过滤式变量选择算法进行了系统的分析与梳理,重点对不同变量评价标准依赖的假设条件进行了数学上的推导和说明。最后总结了其发展规律,可为后续研究尤其是建立空间环境预测模型提供借鉴。

关 键 词:输入变量选择  互信息  回归模型  多步预测
收稿时间:2018-03-23
修稿时间:2018-05-30

Overview of the Mutual Information-Based Input Variable Selection Method
LI Xiangzhen,SHI Shengwei,YIN Xiaoqiang,LIU Shuai,XIE Xiaodan. Overview of the Mutual Information-Based Input Variable Selection Method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(S2): 6-12
Authors:LI Xiangzhen  SHI Shengwei  YIN Xiaoqiang  LIU Shuai  XIE Xiaodan
Affiliation:1. Science and Technology on Optical Radiation Laboratory, Beijing, 100854, China;2. Beijing Institute of Tracking and Telecommunitions Techonology, Beijing, 100094, China;3. Zhisheng Lianfa Information Technology Co. Ltd, Bejing, 100000, China;4. 66132 Army, Beijing, 100083, China
Abstract:The space environment is an important part of space situational awareness. In the field of space science, due to the incomplete understanding of the physics laws of the solar-terrestrial system, some existing space environmental prediction models based on physical mechanisms are still difficult to practicalize. It is more common to use the data-based empirical models. The input variable selection(IVS) algorithm based on mutual information(MI) can help to determine the impact inputs of the spatial environmental prediction models. Since taking into account of the potential relationship between different inputs, and between inputs and outputs, the MI-IVS algorithms have been widely applied to the regression and classification problems in recent years. From different perspectives, this paper systematically analyzes the current widely-used filter-based MI-IVS algorithms with the three key points of the IVS algorithms, namely the evaluation criteria, the search strategy and the stopping criterion as a clue. It focuses on the mathematical derivation of the assumptions of these criterias. Finally, the trend of the MI-IVS algorithms is summarized, which can provide reference for subsequent research, especially for establishing space environmental prediction models.
Keywords:input variable selection  mutual information  regression model  multi-step prediction
点击此处可从《南京航空航天大学学报》浏览原始摘要信息
点击此处可从《南京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号