首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coupled simulation of flow-structure interaction in turbomachinery
Institution:1. Department of Mechanical and Aerospace Engineering, Propulsion Research Center, University of Alabama in Huntsville, 5000 Technology Drive, Huntsville, AL 35899, USA;2. Solar Turbines Incorporated, San Diego, CA 92186-5376, USA;1. Department of Technical Mathematics, FME, Czech Technical University in Prague, Czech Republic;2. Institute of Thermomechanics CAS, Prague, Czech Republic
Abstract:The aeroelastic behaviour of vibrating blade assemblies is usually investigated in the frequency domain where the determination of aeroelastic stability boundaries is separated from the computation of linearized unsteady aerodynamic forces. However, nonlinear fluid-structure interaction caused by oscillating shocks or strong flow separation may significantly influence the aerodynamic damping and hence effect a shift of stability boundaries. In order to investigate such aeroelastic phenomena, the governing equations of structural and fluid motion have to be simultaneously integrated in time.In this paper a technique is presented which analyses the flutter behaviour of turbomachinery bladings in the time domain. The structural part of the governing aeroelastic equations is time-integrated according to the algorithm of Newmark, while the unsteady airloads are computed at every time step by a Navier–Stokes code. The link between the two time integrations is an automatic grid generation in which the used mesh is dynamically deformed so that it conforms with the deflected blades at every time step.The computed time series of the aeroelastic simulation of an assembly of highly loaded compressor blades vibrating freely in transonic flow are presented. The energy transfer between fluid and structure is here dominated by vibrating shocks and shock-boundary layer interaction. It is investigated if the predicted aeroelastic stability boundaries differ from those of a linearised method.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号