A study of the polar current systems using the IMS meridian chains of magnetometers |
| |
Authors: | S. -I. Akasofu B. -H. Ahn G. J. Romick |
| |
Affiliation: | 1. Geophysical Institute, University of Alaska, 99701, Fairbanks, AK, USA
|
| |
Abstract: | Magnetic field data from a meridian chain of observatories and the recently developed computer codes constitute a powerful tool in studying substorm current systems in the polar region. In this paper, we summarize some of the results obtained from the IMS Alaska meridian chain of observatories. The basic data are the average daily magnetic field variations for 50 successive days (March 9–April 27, 28) which represent a moderately disturbed period. With the aid of the two computer codes, we obtained the distribution of the following quantities in the polar ionosphere in invariant-MLT coordinates: (1) the total ionospheric current; (2) the Pedersen current; (3) the Hall current; (4) the field-aligned currents; (5) the Pedersen-associated field-aligned currents; (6) the Hall-associated field-aligned currents; (7) the electric potential; (8) the Joule heat production rate; (9) the auroral particle energy injection rate; (10) the total energy dissipation rate. All these quantities are related to each other self-consistently at every point under the initial assumptions used in the computation. By using a model of the magnetosphere, the following quantities in the polar ionosphere are projected onto the equatorial plane and the Y — Z plane at X = -20 R E: (11) the Pedersen current counterpart; (12) the Hall current counterpart; (13) the electric potential; (14) the Pedersen-associated field-aligned currents; (15) the Hall-associated field-aligned currents. These distribution patterns serve as an important basis for studying the generation mechanisms of substorm current systems and the magnetosphere-ionosphere coupling process. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|