基于ACMPE、ISSL-Isomap和GWO-SVM的行星齿轮箱故障诊断 |
| |
引用本文: | 戚晓利,王振亚,吴保林,叶绪丹,潘紫微. 基于ACMPE、ISSL-Isomap和GWO-SVM的行星齿轮箱故障诊断[J]. 航空动力学报, 2019, 34(4): 744-755. DOI: 10.13224/j.cnki.jasp.2019.04.002 |
| |
作者姓名: | 戚晓利 王振亚 吴保林 叶绪丹 潘紫微 |
| |
作者单位: | 安徽工业大学机械工程学院,安徽马鞍山,243032;安徽工业大学机械工程学院,安徽马鞍山,243032;安徽工业大学机械工程学院,安徽马鞍山,243032;安徽工业大学机械工程学院,安徽马鞍山,243032;安徽工业大学机械工程学院,安徽马鞍山,243032 |
| |
基金项目: | 国家自然科学基金(51505002);安徽省自然科学基金(1808085ME152);安徽省高校自然科学研究重点项目(KJ2017 A053);研究生创新研究基金(2017012) |
| |
摘 要: | 针对从行星齿轮箱非线性、非平稳振动信号特征提取困难的问题,提出了一种基于自适应复合多尺度排列熵(ACMPE)、改进监督型自组织增量学习神经网络界标点等度规映射(ISSL-Isomap)和灰狼群优化支持向量机(GWO-SVM)相结合的行星齿轮箱故障诊断方法。利用ACMPE从复杂域提取振动信号的故障特征,构建高维故障特征集;采用ISSL-Isomap方法对高维故障特征集进行维数约简,提取出低维、敏感故障特征;应用GWO -SVM分类器对低维故障特征进行模式识别,判断故障类型。行星齿轮箱故障诊断实验结果分析表明:与多尺度排列熵(MPE)、复合多尺度排列熵(CMPE)等特征提取方法相比,ACMPE方法在分类效果和识别精度上更具优势;与局部切空间排列(LTSA)、等度规映射(Isomap)、加权Isomap(W-Isomap)、监督Isomap(S-Isomap)和监督型自组织增量学习神经网络界标点Isomap(SSL-Isomap)等降维方法进行比较,ISSL-Isomap方法降维效果最佳;所提方法的故障识别率达到100%,具有一定优越性。
|
关 键 词: | 故障诊断 行星齿轮箱 自适应复合多尺度排列熵(ACMPE) 改进监督型自组织增量学习神经网络界标点等度规映射(ISSL-Isomap) 灰狼群优化支持向量机(GWO-SVM) |
收稿时间: | 2018-07-24 |
Planetary gearbox fault diagnosis based on ACMPE, ISSL-Isomap and GWO-SVM |
| |
Abstract: | In view of the difficulty of extracting nonlinear and non-stationary vibration signals from planetary gearboxes, a planetary gearbox fault diagnosis method based on adaptive composite multi-scale permutation entropy (ACMPE), improved supervised self-organizing incremental neural network landmark isometric mapping (ISSL-Isomap) and grey wolf optimizer support vector machine (GWO-SVM) was proposed. Fault features of vibration signals were extracted from the complex domain by using ACMPE, and the high-dimensional fault feature set was constructed. ISSL-Isomap was used to reduce the dimension of the high-dimensional fault feature set, and the low-dimensional and sensitive fault features were extracted. The low-dimensional fault features were input into a GWO-SVM classifier to recognize fault types. The analysis results of planetary gearbox fault diagnosis show that compared with the feature extraction methods of multi-scale permutation entropy (MPE) and composite MPE (CMPE), ACMPE has more advantages in classification effect and recognition accuracy. ISSL-Isomap has the best dimensionality reduction effect compared with the dimensionality reduction algorithms of local tangent space alignment (LTSA), isometric mapping (Isomap), weighted Isomap (W-Isomap), supervised Isomap (S-Isomap) and supervised self-organizing incremental neural network landmark Isomap (SSL-Isomap). The fault recognition rate of the proposed method reaches 100% with a certain superiority. |
| |
Keywords: | fault diagnosis planetary gearbox adaptive composite multi-scale permutation entropy(ACMPE) improved supervised self-organizing incremental neural network landmark isometric mapping (ISSL-Isomap) grey wolf optimizer support vector machine(GWO-SVM) |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《航空动力学报》浏览原始摘要信息 |
|
点击此处可从《航空动力学报》下载全文 |
|