首页 | 本学科首页   官方微博 | 高级检索  
     

基于ACMPE、ISSL-Isomap和GWO-SVM的行星齿轮箱故障诊断
作者姓名:戚晓利  王振亚  吴保林  叶绪丹  潘紫微
作者单位:安徽工业大学机械工程学院,安徽马鞍山,243032;安徽工业大学机械工程学院,安徽马鞍山,243032;安徽工业大学机械工程学院,安徽马鞍山,243032;安徽工业大学机械工程学院,安徽马鞍山,243032;安徽工业大学机械工程学院,安徽马鞍山,243032
基金项目:国家自然科学基金(51505002);安徽省自然科学基金(1808085ME152);安徽省高校自然科学研究重点项目(KJ2017 A053);研究生创新研究基金(2017012)
摘    要:针对从行星齿轮箱非线性、非平稳振动信号特征提取困难的问题,提出了一种基于自适应复合多尺度排列熵(ACMPE)、改进监督型自组织增量学习神经网络界标点等度规映射(ISSL-Isomap)和灰狼群优化支持向量机(GWO-SVM)相结合的行星齿轮箱故障诊断方法。利用ACMPE从复杂域提取振动信号的故障特征,构建高维故障特征集;采用ISSL-Isomap方法对高维故障特征集进行维数约简,提取出低维、敏感故障特征;应用GWO -SVM分类器对低维故障特征进行模式识别,判断故障类型。行星齿轮箱故障诊断实验结果分析表明:与多尺度排列熵(MPE)、复合多尺度排列熵(CMPE)等特征提取方法相比,ACMPE方法在分类效果和识别精度上更具优势;与局部切空间排列(LTSA)、等度规映射(Isomap)、加权Isomap(W-Isomap)、监督Isomap(S-Isomap)和监督型自组织增量学习神经网络界标点Isomap(SSL-Isomap)等降维方法进行比较,ISSL-Isomap方法降维效果最佳;所提方法的故障识别率达到100%,具有一定优越性。 

关 键 词:故障诊断  行星齿轮箱  自适应复合多尺度排列熵(ACMPE)  改进监督型自组织增量学习神经网络界标点等度规映射(ISSL-Isomap)  灰狼群优化支持向量机(GWO-SVM)
收稿时间:2018-07-24
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号