首页 | 本学科首页   官方微博 | 高级检索  
     

抗离群值的鲁棒正则化贯序超限学习机
引用本文:郭威,汤克明,于建江. 抗离群值的鲁棒正则化贯序超限学习机[J]. 南京航空航天大学学报, 2019, 51(5): 704-710
作者姓名:郭威  汤克明  于建江
作者单位:盐城师范学院信息工程学院,盐城,224002
基金项目:国家自然科学基金 61603326 61379064;61273106)资助项目国家自然科学基金(61603326, 61379064, 61273106)资助项目。
摘    要:
针对离群值环境下的在线学习问题,提出一种鲁棒正则化贯序超限学习机(Robust regularized online sequential extreme learning machine,RR-OSELM)。RR-OSELM以增量学习新样本的方式实现在线学习,并在学习过程中基于样本的先验误差进行逆向加权计算以降低学习模型对于离群值的敏感性;同时RR-OSELM通过融合使用Tikhonov正则化技术进一步增强了其在实际应用中的稳定性。实验结果表明,RR-OSELM具有较同类算法更好的鲁棒性和实用性,对于离群值环境下的在线建模与预测问题是积极有效的。

关 键 词:在线贯序超限学习机  离群值  鲁棒性  Tikhonov正则化  在线学习
收稿时间:2018-06-17
修稿时间:2018-10-12

Robust Regularized Online Sequential Extreme Learning Machine for Outliers Restraining
GUO Wei,TANG Keming,YU Jianjiang. Robust Regularized Online Sequential Extreme Learning Machine for Outliers Restraining[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(5): 704-710
Authors:GUO Wei  TANG Keming  YU Jianjiang
Abstract:
Aiming at the online learning with outliers, this paper proposes a robust regularized online sequential extreme learning machine (RR-OSELM). The proposed RR-OSELM is able to learn the newly arrived samples incrementally by a recursive fashion, and assign inverse weights for each example based on the priori error so as to reduce its sensibility to outliers. The Tikhonov regularization technique is incorporated in the RR-OSELM to further enhance the stability of the algorithm in real applications. Experimental results show that the proposed RR-OSELM is more robust than its counterparts, and it can be applied to the online modeling and prediction of data streams with outliers.
Keywords:online sequential extreme learning machine  outlier  robustness  Tikhonov regularization  online learning
本文献已被 CNKI 等数据库收录!
点击此处可从《南京航空航天大学学报》浏览原始摘要信息
点击此处可从《南京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号