首页 | 本学科首页   官方微博 | 高级检索  
     

基于L1范数的k平面聚类算法设计
引用本文:杨红鑫,杨绪兵,寇振宇,业巧林,张福全,许等平. 基于L1范数的k平面聚类算法设计[J]. 南京航空航天大学学报, 2019, 51(5): 681-686
作者姓名:杨红鑫  杨绪兵  寇振宇  业巧林  张福全  许等平
作者单位:1.南京林业大学信息科学技术学院, 南京, 210037;2.国家林业局调查规划设计院, 北京, 100714
基金项目:国家自然科学基金 61472186;50375057)资助项目;江苏省自然科学基金 BK20161527;BK20171453)资助项目;江苏省研究生科研与实践创新计划 SJKY19_0907国家自然科学基金(61472186,50375057)资助项目;江苏省自然科学基金(BK20161527,BK20171453)资助项目;江苏省研究生科研与实践创新计划(SJKY19_0907)资助项目。
摘    要:基于L2范数度量的k平面聚类(k-Plane Clustering,k PC)设计思想,本文提出了一种采用L1范数度量的聚类算法。由于在平面更新步骤中,所导出的优化问题是非凸的,文中给出了一种求解方法,即将非凸问题转化为有限个子集上的凸问题,为避免求解多个优化问题导致训练时间过长问题,本文还设计了一种新的优选策略,有限个子集的搜索任务可在线性时间内完成。本文所提出的方法只需要求解k个线性规划,而不再是k PC的求解特征值问题。在人工和UCI数据集上的实验结果表明:基于L1范数平面聚类算法的训练和测试时间更短,且在大多数数据集上均表现出了更好的聚类性能。

关 键 词:L1范数  凸问题  平面聚类  线性规划
收稿时间:2018-09-30
修稿时间:2019-05-06

k Plane Clustering Algorithm Based on L1 Norm
YANG Hongxin,YANG Xubing,KOU Zhenyu,YE Qiaolin,ZHANG Fuquan,XU Dengping. k Plane Clustering Algorithm Based on L1 Norm[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(5): 681-686
Authors:YANG Hongxin  YANG Xubing  KOU Zhenyu  YE Qiaolin  ZHANG Fuquan  XU Dengping
Affiliation:1.College of Information Science and Technology, Nanjing Forestry University, Nanjing, 210037, China;2.State Forestry Administration Survey Planning Institute, Beijing, 100714, China
Abstract:Inspiring by the k-plane clustering (kPC) on L2 norm metrics, a L1 norm clustering algorithm is proposed by introducing L1 metric into clustering, which is termed as L1 kPC (k-plane clustering using L1 norm). The plane-updating of L1 kPC can be characterized by a nonconvex optimization problem. An alternative strategy is provided to conquer such non-convexity. That is, the nonconvex problem can be transformed into a series of convex problems on a finite number of subsets. Meanwhile, in order to avoid solving multiple optimization problems on individual subsets thereby resulting in heavy training burden, a search strategy is also provided to seek suitable subset and this search task can be completed in a linear time. Thus the foresaid optimization problem only needs to solve k linear programming instead of solving the k eigenvalue problems in kPC. Experimental results on artificial and UCI datasets show that the proposed method has less training and testing time-consume, and comparable or even better clustering performance on the majority data sets.
Keywords:L1 norm  convex problem  plane clustering  linear programming
本文献已被 CNKI 等数据库收录!
点击此处可从《南京航空航天大学学报》浏览原始摘要信息
点击此处可从《南京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号