首页 | 本学科首页   官方微博 | 高级检索  
     

一种小波神经网络与遗传算法结合的优化方法
引用本文:王保国,刘淑艳,钱耕,南希,郭宇航. 一种小波神经网络与遗传算法结合的优化方法[J]. 航空动力学报, 2008, 23(11): 1953-1960
作者姓名:王保国  刘淑艳  钱耕  南希  郭宇航
作者单位:1.北京理工大学 宇航科学技术学院, 北京 100081
基金项目:国家自然科学基金,高等学校博士学科点专项基金
摘    要:提出一种基于小波神经网络(简称WNN)与Pareto遗传算法相结合的优化方法,并用于内流的数值流场优化计算.小波神经网络由输入层、隐含层和输出层组成.在隐含层用Morlet小波母函数取代了误差反向传播(BP)神经网络中常用的Sigmoid激励函数.Pareto遗传算法具有很好的全局寻优能力和良好的优化效率,在通常情况下它总可以得到均匀分布的Pareto最优解集.典型算例表明:该算法快速、高效,能高精度的完成非线性函数的逼近与映射,其泛化能力很强. 

关 键 词:小波神经网络   Pareto遗传算法   射流元件   叶轮机械   优化设计
收稿时间:2008-07-06
修稿时间:2008-09-01

Optimization method by combination of wavelet neural networks and genetic algorithm
WANG Bao-guo,LIU Shu-yan,QIAN Geng,NAN Xi and GUO Yu-hang. Optimization method by combination of wavelet neural networks and genetic algorithm[J]. Journal of Aerospace Power, 2008, 23(11): 1953-1960
Authors:WANG Bao-guo  LIU Shu-yan  QIAN Geng  NAN Xi  GUO Yu-hang
Affiliation:1.School of Aerospace Science and Engineering, Beijing Institute of Technology, Beijing 100081, China2.2.School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:An optimization method based on the combination of wavelet neural networks(WNN)and Pareto genetic algorithm was proposed,and was applied to the numerical optimization in internal flows.WNN is composed of input layer,hidden layer and output layer.It replaces the commonly used Sigmoid activation function in back propagation(BP) neural networks by Morlet wavelet generating functions in hidden layer.Pareto genetic algorithm has great global optimum ability and optimization efficiency.Generally,it can always gai...
Keywords:wavelet neural networks(WNN)  Pareto genetic algorithm  fluidic element  turbomachine  optimization design  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号