The implantation of life on Mars: feasibility and motivation. |
| |
Authors: | R H Haynes C P McKay |
| |
Affiliation: | Department of Biology, York University, Toronto, Canada. |
| |
Abstract: | Environmental conditions on Mars are extremely hostile, and would be destructive to any organisms which might arrive there unprotected to-day. However, it is a biocompatible planet. Its unalterable astrophysical parameters would allow the maintenance of a much thicker, warmer carbon dioxide atmosphere than that which currently exists. Though very cold (averaging about -60 degrees C), highly oxidizing and desiccated, Mars may possess substantial quantities of the materials needed to support life--in particular, water and carbon dioxide. A general scenario for implanting life on Mars would include three main phases: (1) robotic and human exploration to determine whether sufficiently large and accessible volatile inventories are available; (2) planetary engineering designed to warm the planet, release liquid water and produce a thick carbon dioxide atmosphere; and (3) if no indigenous Martian organisms emerge as liquid water becomes available, a program of biological engineering designed to construct and implant pioneering microbial communities able to proliferate in the newly clement, though still anaerobic, Martian environment. The process of establishing an ecosystem, or biosphere, on a lifeless planet is best termed 'ecopoiesis.' This new word, derived from Greek, means 'the making of an abode for life.' It is by no means clear whether ecopoiesis on Mars is scientifically possible or technologically achievable. Thus we urge that it be one of the objectives of space research during the next century to assess the feasibility of ecopoiesis on Mars. |
| |
Keywords: | |
|
|