首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络与果蝇优化算法的涡轮叶片低循环疲劳寿命健壮性设计
引用本文:周平,白广忱. 基于神经网络与果蝇优化算法的涡轮叶片低循环疲劳寿命健壮性设计[J]. 航空动力学报, 2013, 28(5): 1013-1018
作者姓名:周平  白广忱
作者单位:北京航空航天大学 能源与动力工程学院, 北京 100191
摘    要:
在对涡轮叶片低循环疲劳寿命概率分析的基础上,将广义回归型神经网络(generalized regression neural network,GRNN)与果蝇优化算法(fruit fly optimization algorithm,FFOA)结合,利用果蝇优化算法的多点全局的快速搜索能力来优化影响疲劳寿命的随机变量,进行涡轮叶片低循环疲劳寿命健壮性优化设计.优化结果表明:疲劳寿命的概率区间减小17.9%,对随机变量的敏感度降低,从而可以更精确地对疲劳寿命进行估计.计算结果验证了该方法在工程应用中的可行性. 

关 键 词:涡轮叶片   低循环疲劳   概率寿命   广义回归型神经网络   果蝇优化算法   健壮性
收稿时间:2012-05-19

Robust design of turbine-blade low cycle fatigue life based on neural networks and fruit fly optimization algorithm
ZHOU Ping and BAI Guang-chen. Robust design of turbine-blade low cycle fatigue life based on neural networks and fruit fly optimization algorithm[J]. Journal of Aerospace Power, 2013, 28(5): 1013-1018
Authors:ZHOU Ping and BAI Guang-chen
Affiliation:School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:
By combining generalized regression neural network (GRNN) with fruit fly optimization algorithm (FFOA) and using FFOA multi-point global search ability to optimize the random variable which affects the fatigue life, a robust optimization design for low cycle fatigue life of turbine-blade can be made on the base of probability analysis for turbine-blade low cycle fatigue life.Optimization results show that the probability interval of fatigue life decreases 17.9%,and the sensitivity of the low cycle fatigue life of the random variable can be reduced,so the fatigue life can be estimated more accurately.Optimization results indicate that the proposed method is available and feasible for the engineering application.
Keywords:turbine-blade  low cycle fatigue  probability life  generalized regression neural network(GRNN)  fruit fly optimization algorithm(FFOA)  robust
本文献已被 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号