首页 | 本学科首页   官方微博 | 高级检索  
     

复杂背景下机场道面细带状结构病害检测算法
作者姓名:李海丰  韩红阳
作者单位:中国民航大学 计算机科学与技术学院, 天津 300300
基金项目:国家重点研发计划(2019YFB1310601)~~;
摘    要:机场道面裂缝、角隅断裂、接缝破碎、修补等病害宽度狭小、长短不一、图像中像素占比少,呈细带状结构,且与复杂背景对比度低,现有检测算法效果不佳。针对以上问题,提出了一种基于注意力机制与特征融合的深度神经网络模型DetMSPNet。首先,利用注意力机制模块CBAM,使得特征学习更加专注于细带状结构病害区域,抑制干扰信息;其次,构建残差空洞金字塔模块,提取不同尺度空间下的特征信息;然后,设计最大池化支路,便于之后浅、深层不同层次特征进行融合,加强模型对于病害的定位能力,并且将深层特征输入3种不同扩张率的扩张卷积和金字塔池化模块,使得病害特征包含更多全局上下文信息;最后,对所有层输出的病害特征信息进行融合,实现不同尺度、不同层次特征的信息互补。与目前3种经典的目标检测算法在机场道面病害图像数据集APD上做了对比实验,结果表明:所提算法的mAP达到78.51%,优于对比算法。所提DetMSPNet模型,提高了算法对机场道面细带状结构病害检测中宽度狭小、长短不一、图像中像素占比少、与复杂背景对比度低等情况的适应能力。 

关 键 词:机场道面细带状结构病害   DetMSPNet   注意力机制   特征融合   复杂背景
收稿时间:2020-09-11
本文献已被 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号