首页 | 本学科首页   官方微博 | 高级检索  
     

填充式防护结构弹道极限方程的差异演化优化
引用本文:贾光辉,姚光乐,张帅. 填充式防护结构弹道极限方程的差异演化优化[J]. 北京航空航天大学学报, 2018, 44(7): 1489-1495. DOI: 10.13700/j.bh.1001-5965.2017.0515
作者姓名:贾光辉  姚光乐  张帅
作者单位:北京航空航天大学宇航学院,北京,100083;中国空间技术研究院总体部,北京,100094
摘    要:
综合建模形式弹道极限方程中存在11个待定参数,从理论上讲,采用穷举法可以获得其数值大小,但需要的计算时间过长,储存空间巨大,不宜实现,为解决此问题,改用差异演化算法。基于填充式实验数据,采用差异演化算法对综合建模形式弹道极限方程的11个待定参数进行了多目标优化计算。结果显示,方程的总体预测率为82.35%,安全预测率为100%,平均相对误差平方和为0.001 3。该方程对其他来源的49个实验数据的预测结果显示,总体预测率提升了1.32%,安全预测率降低了4.08%,平均相对误差平方和增加了0.007 3,表明差异演化算法适用于解决多参数多目标的弹道极限方程建模问题。

关 键 词:填充式防护结构  弹道极限方程  综合建模  差异演化算法  总体预测率  安全预测率  相对误差平方和
收稿时间:2017-08-01

Differential evolution optimization for stuffed Whipple shield ballistic limit equations
JIA Guanghui,YAO Guangle,ZHANG Shuai. Differential evolution optimization for stuffed Whipple shield ballistic limit equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1489-1495. DOI: 10.13700/j.bh.1001-5965.2017.0515
Authors:JIA Guanghui  YAO Guangle  ZHANG Shuai
Abstract:
There are 11 parameters in the form of domestic integrated modeling of ballistic limit equations. Theoretically, the exhaustion method can be used to obtain the numerical value, but the computation time is too long and the storage space is huge, so it is not suitable to realize. To solve this problem, differential evolution algorithm is used. Based on the domestic data of stuffed Whipple shield, the differential evolution algorithm is applied to optimize 11 undetermined parameters of the formal ballistic limit equation of the integrated modeling. The optimization results show that the totality predicted rate is 82.35%, the safety predicted rate is 100%, and the average sum of squared prediction relative errors is 0.001 3. Based on 49 experimental data from other sources for predictive testing, the prediction test shows that the totality predicted rate is raised by 1.32%, the safety predicted rate is reduced by 4.08%, and the average sum of squared prediction relative errors is increased by 0.007 3. It shows that the differential evolution algorithm is suitable for solving the ba-llistic limit equation modeling of multiple parameters and multiple targets.
Keywords:stuffed Whipple shield  ballistic limit equation  integrated modeling  differential evolution algorithm  totality predicted rate  safety predicted rate  sum of squared relative errors
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号