首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群算法的极短弧定轨
引用本文:李鑫冉,王歆. 基于粒子群算法的极短弧定轨[J]. 飞行器测控学报, 2015, 34(6): 545-551
作者姓名:李鑫冉  王歆
作者单位:1.中国科学院紫金山天文台;2.中国科学院空间目标与碎片观测重点实验室;3.中国科学院大学;1.中国科学院紫金山天文台;2.中国科学院空间目标与碎片观测重点实验室
摘    要:
针对经典的初轨计算方法在极短弧定轨中不适用的情况,建立了一种基于粒子群算法的极短弧(TooShort-Arc,TSA)定轨的计算方法。该方法将问题转化为两个三变量的分层优化问题,采用(a,e,M)作为优选变量,在保持问题维数较低的同时,实现了计算结果和观测资料的解耦。由于实测资料处理中的野值剔除方法不适用于粒子群算法,所以,采用稳健估计法,通过在适值函数中使用最小中值二乘准则,实现了稳健的极短弧计算方法。同时,应用MATLAB计算软件,选用缺省参数实现该算法,以进行数据验证。基于实测数据的数值验证表明,方法对于近圆轨道目标30s以下的弧段仍可以获得有效的结果,10s弧段误差仅为16km。此精度满足后续处理的需要,且方法稳健,具有很高的崩溃点。

关 键 词:极短弧;初轨计算;粒子群算法;优化;稳健估计;最小二乘

Particle Swarm Optimization forInitial Orbit Determination with Too-Short-Arc
LI Xinran and WANG Xin. Particle Swarm Optimization forInitial Orbit Determination with Too-Short-Arc[J]. Journal of Spacecraft TT&C Technology, 2015, 34(6): 545-551
Authors:LI Xinran and WANG Xin
Abstract:
A new method of Initial Orbit Determination (IOD) for too-short-arc(TSA) using PSO (Particle Swarm Optimization) is established as the traditional methods are not applicable.In the method,IOD is reduced to a two-stage hierarchical optimization problem containing three variables for each stage so that (a,e,M) is regarded as a variable of the optimization.Moreover,optimization brings about decoupling from observation data when the number of dimensions of the problem keeps low.Because of the difference of computing processes between PSO and the classical method,methods for outliers editing are not applicable.To get a robust estimate for PSO,a robust estimation method is used by adopting least median square in the fitness function.The algorithm is programmed with MATLAB using default values.Numerical experiments based on real measurements show that for near circular orbit,the method provides valid initial values for 30 s arc length and even shorter,and the error of 10 s arc is only 16 km.The accuracy meets the requirements of post-processing.Meanwhile,the algorithm is robust and has a high breakdown point.
Keywords:too-short-arc   initial orbit determination   particle swarm optimization   optimization   robustness estimate   least square
本文献已被 CNKI 等数据库收录!
点击此处可从《飞行器测控学报》浏览原始摘要信息
点击此处可从《飞行器测控学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号