首页 | 本学科首页   官方微博 | 高级检索  
     

低成本捷联惯导不对称动态误差的神经网络补偿
引用本文:谭红力,黄新生,岳冬雪. 低成本捷联惯导不对称动态误差的神经网络补偿[J]. 航空学报, 2008, 29(2): 443-449
作者姓名:谭红力  黄新生  岳冬雪
作者单位:国防科技大学,机电工程与自动化学院,湖南,长沙,410073;国防科技大学,机电工程与自动化学院,湖南,长沙,410073;国防科技大学,机电工程与自动化学院,湖南,长沙,410073
摘    要:
 针对低成本捷联惯导系统(SINS)中陀螺动态误差的不对称性在角振动条件下造成姿态漂移的问题,设计了多层前向神经网络的补偿模型。在标定模型参数时,为降低对外部参考信号测量精度的要求,提出用姿态解算的最终误差作为网络优化目标的训练方法。由于最终的姿态误差不是网络的期望输出,无法采用有导师的训练方法,为此采用了微粒群优化算法。仿真实验结果表明:补偿后的陀螺动态误差的不对称度减小了一个数量级。

关 键 词:低成本  捷联惯导系统  不对称动态误差  标定  补偿  多层前向神经网络  微粒群优化
文章编号:1000-6893(2008)02-0443-07
修稿时间:2007-05-09

Application of Neural Network to Compensate Asymmetry Dynamic Errors in Low-cost SINS
Tan Hongli,Huang Xinsheng,Yue Dongxue. Application of Neural Network to Compensate Asymmetry Dynamic Errors in Low-cost SINS[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 443-449
Authors:Tan Hongli  Huang Xinsheng  Yue Dongxue
Affiliation:College of Mechatronics Engineering and Automation, National University of Defense Technology
Abstract:
In a low-cost strapdown inertial navigation system(SINS),a multilayer feedforward neural network(NN) was designed to compensate the gyros asymmetry dynamic errors which caused attitude drift in rate oscillation. To reduce the accuracy demand of the reference signals in calibrating the NN model,the terminal attitude errors were computed as the network performance function for NN training.Unlike the supervised training,the terminal attitude errors were not the network target outputs.Therefore,the particle swarm optimization algorithm was applied to train the network.Simulation experiment results demonstrate that gyros asymmetry dynamic errors were reduced to about ten percent of those without the NN compensation.
Keywords:low-cost  strapdown inertial navigation system  asymmetry dynamic error  calibration  compensation  multilayer feedforward neural network  particle swarm optimization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号