首页 | 本学科首页   官方微博 | 高级检索  
     

基于自联想网络的发动机传感器解析余度技术
引用本文:黄向华,孙健国,依里亚索夫,华西里也夫. 基于自联想网络的发动机传感器解析余度技术[J]. 航空动力学报, 1999, 14(4): 433-436
作者姓名:黄向华  孙健国  依里亚索夫  华西里也夫
作者单位:1.南京航空航天大学
基金项目:航空科学基金,中俄高校科技合作项目
摘    要:本文提出了一种基于自联想神经网络的传感器解析余度技术。在这种网络中,冗余传感器的信息被压缩、重组进入网络的第一部分,网络的第二部分将压缩信息恢复出来。基于数据融合原理,若一个传感器发生故障,其它传感器仍可提供足够的信息代替发生故障的传感器。理论分析和用于涡轴发动机的仿真结果表明,这种特殊结构的自联想网络具有良好的过滤噪声和故障信号的作用,特别适合于用作不易建模的复杂对象的传感器信号重构

关 键 词:航空发动机   传感器   神经网络   余度技术
收稿时间:1999-02-01

ANALYTICAL REDUNDANCY BASED ON AUTOASSOCIATIVE NEURAL NETWORK FOR AEROENGINE SENSORS
Huang Xianghu,Sun Jianguo,Ilyasov B.G. and Vasilyev V.I.. ANALYTICAL REDUNDANCY BASED ON AUTOASSOCIATIVE NEURAL NETWORK FOR AEROENGINE SENSORS[J]. Journal of Aerospace Power, 1999, 14(4): 433-436
Authors:Huang Xianghu  Sun Jianguo  Ilyasov B.G.  Vasilyev V.I.
Affiliation:1.2nd Dept.Nanjing University of Aeronautics and Astronautics,Nanjing 2100162.UFA State Aviation Technical University
Abstract:Analytical redundancy technology based on autoassociative neural network is presented for aeroengine sensors.It doesn't depend on model and needs only the sample net of measurement data without sensor fault to train the network.Then it can work on-line.Estimation Feedback Scheme is developed and can meet the real-time requirements.If there has been performance degeneration of aeroengines,a compensation algorithm can be used automatically.Sensor fault analytical redundancy is accomplished by integrating the network estimation and fault detection logic.The results of theoretical analysis and simulation show that the provided scheme has the ability of distinguishing performance degeneration and sensor faults,and it also can detect soft faults of sensors.
Keywords:Aeroengine Neural network Redundancy techniques
本文献已被 CNKI 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号