首页 | 本学科首页   官方微博 | 高级检索  
     

基于朴素贝叶斯K近邻的快速图像分类算法
引用本文:张旭,蒋建国,洪日昌,杜跃. 基于朴素贝叶斯K近邻的快速图像分类算法[J]. 北京航空航天大学学报, 2015, 41(2): 302-310. DOI: 10.13700/j.bh.1001-5965.2014.0471
作者姓名:张旭  蒋建国  洪日昌  杜跃
作者单位:合肥工业大学计算机与信息学院,合肥230009;陆军军官学院计算机教研室,合肥230031;合肥工业大学计算机与信息学院,合肥,230009;陆军军官学院计算机教研室,合肥,230031
基金项目:国家自然科学基金资助项目(61172164)
摘    要:朴素贝叶斯最近邻(NBNN)分类算法具有非特征量化和图像-类别度量方式的优点,但算法运行速度较慢,分类正确率较低.针对此问题,提出一种朴素贝叶斯K近邻分类算法,基于快速近似最近邻(FLANN)搜索特征的K近邻用于分类决策并去除背景信息对分类性能的影响;为了进一步提高算法的运行速度及减少算法的内存开销,采用特征选择的方式分别减少测试图像和训练图像集的特征数目,并尝试同时减少测试图像和训练图像集中的特征数目平衡分类正确率与分类时间之间的矛盾.该算法保留了原始NBNN算法的优点,无需参数学习的过程,实验结果验证了算法的正确性和有效性.

关 键 词:图像分类  最近邻  K近邻  图像-类别距离  特征选择
收稿时间:2014-04-28

Accelerated image classification algorithm based on naive Bayes K-nearest neighbor
ZHANG Xu,JIANG Jianguo,HONG Richang,DU Yue. Accelerated image classification algorithm based on naive Bayes K-nearest neighbor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 302-310. DOI: 10.13700/j.bh.1001-5965.2014.0471
Authors:ZHANG Xu  JIANG Jianguo  HONG Richang  DU Yue
Affiliation:ZHANG Xu;JIANG Jianguo;HONG Richang;DU Yue;School of Computer and Information,Hefei University of Technology;Department of Computer,Army Officer Academy of PLA;
Abstract:Naive Bayes nearest neighbor (NBNN) classification algorithm possesses merits of avoiding feature quantization and image-to-class distance measurement, but it faces limitation of slow speed and low classification accuracy. To address the problem, a naive Bayes K-nearest neighbor classification algorithm was presented, where K-nearest neighbor searched by fast library for approximate nearest neighbors(FLANN) was employed and the influence of background information was removed. In order to improve the running speed and reduce memory cost, feature selection was included for reducing feature number of test and training images. And an attempt was tried to balance the contradictory between classification accuracy and classification time by reducing feature number of test image and training images simultaneously. The algorithm retains merits of original NBNN algorithm and requires no parameter learning process. Experimental results verify the correctness and effectiveness of the algorithm.
Keywords:image classification  nearest neighbor  K nearest neighbor  image-to-class distance  feature selection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号