Abstract: | For a two-layer model of the Moon that consists of a solid nonspherical mantle and an ellipsoidal homogeneous liquid core, a theory of forced librations under the effect of gravitational Earth’s moments has been developed. The motion of the Moon over its orbit has been described by the high-accuracy theory of DE/LE-4 orbital motion. Tables have been constructed that present forced librations of the Moon caused by the second harmonic of its force function, in the neighborhood of its motion according to the generalized Cassini laws. Disturbances of the first-order with respect to dynamic compressions of the Moon and its core are obtained in analytical form for Andoyer variables and Poincare variables and for the projection of the angular velocity vector of Moon’s mantle rotation and the Poincare coordinate system (relative to which core’s liquid accomplishes simple motion) on its major central axes of inertia, as well as for the classical variables in the Moon libration theory, etc. Constructed tables of the forced librations theory give the amplitudes and periods of librations and combinations of arguments of the orbital motion theory that correspond to libration parameters. The interpretation of basic variations has been given and a comparison with the previous theories has been carried out, in particular with the modern empirical theory constructed based on the laser observation data. |