首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rotational motion of <Emphasis Type="Italic">Foton M-4</Emphasis>
Authors:V I Abrashkin  K E Voronov  I V Piyakov  Yu Ya Puzin  V V Sazonov  N D Semkin  S Yu Chebukov
Abstract:The actual controlled rotational motion of the Foton M-4 satellite is reconstructed for the mode of single-axis solar orientation. The reconstruction was carried out using data of onboard measurements of vectors of angular velocity and the strength of the Earth’s magnetic field. The reconstruction method is based on the reconstruction of the kinematic equations of the rotational motion of a solid body. According to the method, measurement data of both types collected at a certain time interval are processed together. Measurements of the angular velocity are interpolated by piecewise-linear functions, which are substituted in kinematic differential equations for a quaternion that defines the transition from the satellite instrument coordinate system to the inertial coordinate system. The obtained equations represent the kinematic model of the satellite rotational motion. A solution of these equations that approximates the actual motion is derived from the condition of the best (in the sense of the least squares method) match between the measurement data of the strength vector of the Earth’s magnetic field and its calculated values. The described method makes it possible to reconstruct the actual rotational satellite motion using one solution of kinematic equations over time intervals longer than 10 h. The found reconstructions have been used to calculate the residual microaccelerations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号