首页 | 本学科首页   官方微博 | 高级检索  
     

空间机器人深度学习识别捕获部位的应用探讨
引用本文:李宏坤,时中,胡天健. 空间机器人深度学习识别捕获部位的应用探讨[J]. 飞行器测控学报, 2017, 36(6): 399-407
作者姓名:李宏坤  时中  胡天健
作者单位:北京跟踪与通信技术研究所,北京跟踪与通信技术研究所,北京跟踪与通信技术研究所
摘    要:
针对空间机器人对捕获部位识别方法的普适性、实时性和准确性等要求,提出了采用深度学习方法对空间机器人捕获目标的特征部位进行识别。通过比较分析方法、数据驱动方法等传统识别方法和深度学习方法的优缺点,发现深度学习方法对于解决空间机器人捕获部位识别问题具有显著优势。进一步分析了应用深度学习方法解决捕获部位识别问题的几个关键技术问题,为后续空间机器人在轨捕获目标的研究与实践提供了新的思路。

关 键 词:空间机器人;在轨捕获目标;特征部位识别;深度学习

Application of Capture Position Deep Learning Recognition for Space Rbobots
LI Hongkun,SHI Zhong and HU Tianjian. Application of Capture Position Deep Learning Recognition for Space Rbobots[J]. Journal of Spacecraft TT&C Technology, 2017, 36(6): 399-407
Authors:LI Hongkun  SHI Zhong  HU Tianjian
Affiliation:Beijing Institute of Tracking and Telecommunications Technology,Beijing Institute of Tracking and Telecommunications Technology and Beijing Institute of Tracking and Telecommunications Technology
Abstract:
Universality, accuracy and realtime performance are critical problems in recognizing capture position for a space robot. In this paper, we propose the application of a deep learning method to solve the above problems. After a review of the pros and cons between traditional methods such as analysis and data-driven method and deep learning method for the robot capture problem, we conclude that deep learning method has a great advantage. We also analyzed some key technique problems to obtain a good performance for the application of deep learning in capture position recognition and the results provide a new view to both of research and engineering of space robots for on-orbital capture.
Keywords:space robot   on-orbital capture   capture position recognition   deep learning
点击此处可从《飞行器测控学报》浏览原始摘要信息
点击此处可从《飞行器测控学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号