首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kalman filtering for GPS/magnetometer integrated navigation system
Authors:Hang Guo  Min Yu  Chengwu Zou  Wenwen Huang
Institution:1. Nanchang University, Nanchang 330031, Jiangxi, China;2. Jiangxi Normal University, Nanchang 330022, Jiangxi, China
Abstract:This paper investigated the data processing method for a GPS/IMU/magnetometer integrated system with Kalman filtering (KF). As a result of GPS/IMU/magnetometer land vehicle system, dead-reckoning of magnetometer and accelerometer integrated subsystem bridged very well the GPS signal outage due to the trees on the two sides of the road. Both differential GPS data processing method and the carrier-phase method with magnetometers’ outputs for predicting the car position, velocity, and acceleration (PVA) are presented. The results from DGPS with Kinematical Positioning (KINPOS) software shown that the averages of the north, east, and down direction standard deviation (short for “std”) are 0.014, 0.010, and 0.018 m, respectively. The std of velocities and accelerations derived by the position and velocity differentiation are 10, 7, 13 mm/s, 7, 5, 9 mm/s2, respectively. This method for getting velocities and accelerations requires higher accurate position coordinates. But the position accuracy has frequently been degraded in this case when the car drove under the trees or other similar kinematical environments. That caused the larger velocity and acceleration errors. While the results from the carrier-phase method are std of the velocities = 2.1 mm/s, 1.3 mm/s, 3.7 mm/s in north, east, down, and std of the accelerations = 1.5 mm/s2, 0.9 mm/s2, 2.3 mm/s2 for the static test period; as compared with KINPOS software results, std of the velocity difference between the carrier-phase method and the DGPS method = 7 mm/s, 6.9 mm/s, 9.7 mm/s in north, east, down direction, and std of acceleration difference = 5.0 mm/s2, 4.5 mm/s2, 7.5 mm/s2 in north, east, down direction for the kinematical test period. Obviously, errors come from both the carrier-phase method and DGPS velocity and acceleration results derived directly by the position differentiation. In addition, better accuracy of positions than that before KF has been got by means of velocities and accelerations derived by the carrier-phase method after KF.
Keywords:DGPS  IMU  Magnetometer  Accelerometer  Carrier-phase method  Kalman filtering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号