首页 | 本学科首页   官方微博 | 高级检索  
     


Activation of the tail open part during the magnetospheric storm
Authors:V. M. Mishin  Yu. A. Karavaev  L. A. Sapronova  S. I. Solovyev
Affiliation:1.Institute of Solar-Terrestrial Physics SB RAS,Irkutsk,Russian Federation;2.Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS,Yakutsk,Russian Federation
Abstract:
In each polar cap (PC) we mark out “old PC” observed during quiet time before the event under consideration, and “new PC” that emerges during the substorm framing the old one and expanding the PC total area. Old and new PCs are the areas for the magnetosphere old and new tail lobes, respectively. The new lobe variable magnetic flux Ψ1 is usually assumed to be active, i.e. it provides the electromagnetic energy flux (Poynting flux) ɛ′ transport from solar wind (SW) into the magnetosphere. The old lobe magnetic flux Ψ2 is supposed to be passive, i.e. it remains constant during the disturbance and does not participate in the transporting process which would mean the old PC electric field absolute screening from the convection electric field created by the magnetopause reconnection. In fact, screening is observed, but far from absolute. We suggest a model of screening and determine its quantitative characteristics in the selected superstorm. The coefficient of a screening is the β = Ψ202, where Ψ02 = const is open magnetic flux through the old PC measured prior to the substorm, and Ψ2 is variable magnetic flux through the same area measured during the substorm. We consider three various regimes of disturbance. In each, the coefficient β decreased during the loading phase and increased at the unloading phase, but the rates and amplitudes of variations exhibited a strong dependence on the regime. We interpreted decrease in β as a result of involving the old PC magnetic flux Ψ2, which was considered to be constant earlier, in the Poynting flux ɛ′ transport process from solar wind into the magnetosphere. Transport process weakening at the subsequent unloading phase creates increase in β. Estimates showed that coefficient β during each regime and the computed Poynting flux ɛ′ varied manifolds. In general, unlike the existing substorm conception, the new scenario describes an unknown earlier of tail lobe activation process during a substorm growth phase that effectively increases the accumulated tail energy for the expansion and recovery phases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号