首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Overview of nuclear fragmentation models and needs.
Authors:L W Townsend  F A Cucinotta
Institution:NASA Langley Research Center, Hampton, VA 23681-0001, USA.
Abstract:It has been known for some time that adequate assessment of spacecraft shield requirements and concomitant estimates of astronauts radiation exposures from galactic cosmic radiation requires accurate, quantitative methods for characterizing these radiation fields as they pass through thick absorbers. The main nuclear interaction processes involved are (1) nuclear elastic and inelastic collisions, and (2) nuclear breakup (fragmentation) and electromagnetic dissociation (EMD). Nuclear fragmentation and EMD are important because they alter the elemental and isotopic composition of the transported radiation fields. At present, there is no suitably accurate theory for predicting nuclear fragmentation cross sections for all collision pairs and energies of interest in space radiation protection. Typical cross-section differences between theory and experiment range from about 25 percent to a factor of two. The resulting errors in transported flux, for high linear energy transfer (LET) particles, are comparble to these cross-section errors. In this overview, theoretical models of heavy ion fragmentation currently used to generate input data bases for cosmic-ray transport and shielding codes are reviewed. Their shortcomings are discussed. Further actions needed to improve their accuracy and generality are presented.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号