首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Plasmoid formation in eruptive flares
Authors:T Magara  K Shibata
Institution:

a Department of Astronomy, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

b National Astronomical Observatory, Mitaka, Tokyo 181, Japan

Abstract:One phenomena Yohkoh has observed is plasmoid eruption in flares. Thus this is a key factor that must be explained in any flare mechanism. In order to understand the dynamics of a plasmoid, we performed a numerical MHD simulation and investigated the evolution of the coronal magnetic field, which is initially a force-free configuration. The main results are as follows. At first, small amount of dissipation, induced by the initial perturbation, occurs in the current sheet where the plasmoid forms. This plasmoid is slowly going upward by magnetic tension force of the reconnected magnetic fields produced by initial dissipation. The crucial point comes when the perpendicular magnetic fields are washed away from the reconnection point, after that the reconnection proceeds effectively so that the magnetic tension force of the reconnected fields becomes strong, which make the plasmoid be rapidly erupted upward. These are consistent with the observational results, which say that before the main energy release the plasmoid slowly rises and when the flare sets in it is rapidly accelerated upward. In this paper, we emphasize on the role that the perpendicular magnetic fields play in the evolution of flare.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号