首页 | 本学科首页   官方微博 | 高级检索  
     

基于Nash-Pareto策略的两种改进算法及其应用
引用本文:王保国,刘淑艳,李翔,林欢,李学东. 基于Nash-Pareto策略的两种改进算法及其应用[J]. 航空动力学报, 2008, 23(2): 374-382
作者姓名:王保国  刘淑艳  李翔  林欢  李学东
作者单位:北京理工大学,宇航科学技术学院,北京,100081
基金项目:国家自然科学基金(50376004),高等学校博士学科点专项基金(20030007028)
摘    要:
针对多目标、多设计变量的优化问题,提出了两种优化的新算法:一种是将多目标问题转化为单目标时,对目标权重的确定提出了新的途径;另一种是直接对多目标问题进行优化,并对Pareto遗传优化技术作了改进,以得到均匀分布的Pareto最优解集.两种新算法都是建立在Nash的系统分解与Pareto遗传算法的基础上,因此称这类算法为Nash-Pareto策略.借助于这类算法,文中以跨声速压气机双圆弧类叶型的气动优化为例,给出了气动优化的全过程.数值优化的实验表明所给出的改进算法是可行的、有效的.

关 键 词:航空、航天推进系统  Nash的系统分解法  Pareto遗传算法  Nash-Pareto策略  权重确定  气动数值优化  压气机造型
文章编号:1000-8055(2008)02-0374-09
修稿时间:2007-09-10

Two improved algorithms based on Nash-Pareto strategy and their applications
WANG Bao-guo,LIU Shu-yan,LI Xiang,LIN Huan,LI Xue-dong. Two improved algorithms based on Nash-Pareto strategy and their applications[J]. Journal of Aerospace Power, 2008, 23(2): 374-382
Authors:WANG Bao-guo  LIU Shu-yan  LI Xiang  LIN Huan  LI Xue-dong
Abstract:
Two new algorithms are proposed in the present paper to solve the optimization problems of multi-objectives and multi-design variables.One of these algorithms translates multi-objective into single objective,and develops a new way to determine the objective weights;the other algorithm optimizes multi-objective directly and improves Pareto genetic optimization algorithm in order to obtain optimal solution set of uniform distribution on a Pareto frontier.These two algorithms are based on Nash system decomposition and Pareto genetic algorithm.Therefore,the algorithms of such type are named Nash-Pareto strategy.By using these algorithms,the aerodynamic design optimization of transonic compressor double circular arc profile is computed to show the whole process of optimization.The simulation of numerical optimization experiment illustrates that the improved algorithm is feasible and effective.
Keywords:aerospace propulsion system  the Nash system decomposition  Pareto genetic algorithm  Nash-Pareto strategy  determination of objective weights  aerodynamic numerical optimization  compressor configuration
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号