首页 | 本学科首页   官方微博 | 高级检索  
     

非线性量测下自适应噪声协方差PHD滤波
引用本文:袁常顺,王俊,向洪,魏少明,张耀天. 非线性量测下自适应噪声协方差PHD滤波[J]. 北京航空航天大学学报, 2017, 43(1): 53-60. DOI: 10.13700/j.bh.1001-5965.2016.0034
作者姓名:袁常顺  王俊  向洪  魏少明  张耀天
作者单位:北京航空航天大学电子信息工程学院,北京,100083;北京航空航天大学电子信息工程学院,北京,100083;北京航空航天大学电子信息工程学院,北京,100083;北京航空航天大学电子信息工程学院,北京,100083;北京航空航天大学电子信息工程学院,北京,100083
基金项目:国家自然科学基金(61471019
摘    要:概率假设密度(PHD)滤波算法已被证明是实时多目标跟踪的有效方法,但现有这些基于PHD滤波的方法假设量测噪声协方差先验已知,而实际中量测噪声协方差可能是未知或随着环境改变而变化。针对这一问题,提出了一种适用于非线性量测模型的自适应噪声协方差多目标跟踪算法。该算法以PHD滤波为基础,采用容积卡尔曼(CK)技术近似非线性量测模型,利用逆威沙特(IW)分布描述量测噪声协方差分布,通过变分贝叶斯(VB)近似技术迭代估计量测噪声协方差和多目标状态联合后验密度。仿真结果表明,本文所提算法可有效估计量测噪声协方差,同时实现准确的目标数和目标状态估计。

关 键 词:随机有限集  多目标跟踪  未知量测噪声协方差  交分贝叶斯(VB)  概率假设密度(PHD)滤波
收稿时间:2016-01-08

Adaptive noise covariance PHD filter under nonlinear measurement
YUAN Changshun,WANG Jun,XIANG Hong,WEI Shaoming,ZHANG Yaotian. Adaptive noise covariance PHD filter under nonlinear measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 53-60. DOI: 10.13700/j.bh.1001-5965.2016.0034
Authors:YUAN Changshun  WANG Jun  XIANG Hong  WEI Shaoming  ZHANG Yaotian
Abstract:Probability hypothesis density (PHD) filter has been demonstrated to be an effective approach for multi-target tracking in real time. However, these methods based on the PHD filter assume that the measurement noise covariance is known as a priori. This is unrealistic for real applications because it may be previously unknown or its value may be time-varying as the environment changes. To solve this problem, an adaptive noise covariance algorithm for multi-target tracking under the nonlinear measurement is proposed. Based on the PHD filter, the proposed algorithm employs the cubature Kalman (CK) technology to approximate the nonlinear model, models the noise covariance distribution as inverse Wishart (IW) distribution, and recursively estimates the joint posterior density of the measurement noise covariance and multi-target states by the variational Bayesian (VB) approach. The simulation results indicate that the proposed algorithm could effectively estimate measurement noise covariance, and achieve the accurate estimation of the target number and corresponding multi-target states.
Keywords:random finite set  multi-target tracking  unknown measurement noise covariance  variational Bayesian (VB)  probability hypothesis density (PHD) filter
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号