首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN-LSTM神经网络的前视成像算法
作者姓名:孙晓翰  李凉海  张彬
作者单位:1.北京遥测技术研究所 北京 100076;2.中国航天电子技术研究院 北京 100094
摘    要:
雷达前视成像作为雷达成像领域的难点与重点,在自动驾驶、导航、精确制导等方面具有广阔的应用前景。传统的前视成像算法受限于天线孔径的宽度,无法实现高分辨率的成像,本文使用卷积神经网络(Convolutional Neural Networks, CNN)与长短期记忆(Long Short-Term Memory,LSTM)网络相结合实现前视成像中方位向的预测,首先介绍了扫描前视成像信号的类卷积模型及其病态性,利用脉冲压缩以及距离徙动校正对回波信号预处理,输入CNN-LSTM神经网络逐距离单元进行方位向估计。
仿真结果表明:算法能有效提高前视成像的方位分辨率,实现前视成像的超分辨。


关 键 词:前视成像  深度学习  卷积神经网络  病态性逆问题
收稿时间:2023-12-25
修稿时间:2024-01-03
点击此处可从《遥测遥控》浏览原始摘要信息
点击此处可从《遥测遥控》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号