摘 要: | 雷达前视成像作为雷达成像领域的难点与重点,在自动驾驶、导航、精确制导等方面具有广阔的应用前景。传统的前视成像算法受限于天线孔径的宽度,无法实现高分辨率的成像,本文使用卷积神经网络(Convolutional Neural Networks, CNN)与长短期记忆(Long Short-Term Memory,LSTM)网络相结合实现前视成像中方位向的预测,首先介绍了扫描前视成像信号的类卷积模型及其病态性,利用脉冲压缩以及距离徙动校正对回波信号预处理,输入CNN-LSTM神经网络逐距离单元进行方位向估计。 仿真结果表明:算法能有效提高前视成像的方位分辨率,实现前视成像的超分辨。
|