首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of freezing rate oscillations and convection on eutectic microstructure
Institution:1. Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;2. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;3. Otto Schott Institute of Materials Research, Friedrich-Schiller-Universität, Löbdergraben 32, Jena 07743, Germany
Abstract:As discussed in our review paper (Wilcox, W. R. and Regel, L. L., Microgravity Quarterly, 1994, 4, 147–156), the influence of microgravity on eutectic microstructure has been rather erratic and largely unexplained. Directional solidification in microgravity sometimes coarsened the structure, sometimes made it finer, and sometimes, even on the same system, had no measurable effect. Theoretical models predicted no influence of the weak buoyancy-driven convection that occurs in the vertical Bridgman technique on earth. Thus, we hypothesized that freezing rate fluctuations due to irregular convection might be responsible. For example, with a fibrous microstructure an increase in freezing rate must cause new fibers to form, either by branching or by nucleation. A decrease in freezing rate would cause fibers to terminate by overgrowth of the matrix phase. If the kinetics of fiber formation differs from that for fiber termination, an oscillatory freezing rate would cause the average fiber spacing to deviate from that at a steady freezing rate. We have been investigating this hypothesis both experimentally and theoretically. Vertical Bridgman experiments were performed on the MnBi–Bi eutectic with freezing rate oscillations caused by periodic electric current pulses passed through the material. With increased current amplitude, more and more grains exhibited irregular microstructures. Of the grains with continued quasi-regular rod structure, the microstructure became finer. This result was contrary to that expected from our hypothesis for this system. Numerical modeling also predicted that an oscillatory freezing rate should yield a finer microstructure. It was also predicted that freezing interface oscillations should cause the average melt composition at the freezing rate to deviate from the eutectic. This results in the formation of a composition boundary layer of sufficient thickness that it would become sensitive to convection. Hence we have arrived at a revised hypothesis. On earth, irregular convection causes freezing rate fluctuations that change the interfacial melt composition, leading to a thick composition boundary layer. Convection interacts with this boundary layer to change the interfacial melt composition, thereby altering the response of the system to freezing rate fluctuations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号