首页 | 本学科首页   官方微博 | 高级检索  
     

人工智能气动特性预测技术在火箭子级落区控制项目的应用
引用本文:杜涛,许晨舟,王国辉,宫宇昆,何巍,牟宇,李舟阳,沈丹,程兴,高家一,韩忠华. 人工智能气动特性预测技术在火箭子级落区控制项目的应用[J]. 宇航学报, 2021, 42(1): 61-73. DOI: 10.3873/j.issn.1000-1328.2021.01.007
作者姓名:杜涛  许晨舟  王国辉  宫宇昆  何巍  牟宇  李舟阳  沈丹  程兴  高家一  韩忠华
作者单位:1. 北京宇航系统工程研究所,北京 100076;2. 西北工业大学航空学院翼型、叶栅空气动力学重点实验室,西安 710072
基金项目:国家自然科学基金(11772261)
摘    要:发展了一种基于人工智能算法的气动特性预测技术,在开展部分工况风洞试验基础上,结合少量数值仿真结果,通过机器学习模型预测全部工况气动特性.该方法能够降低研制成本,缩短周期.先后解决了相关函数选择、模型超参数训练、数据检验和"人在回路"应用等关键算法与技术问题,应用于运载火箭子级栅格舵落区控制项目气动研制,获得了设计所需完...

关 键 词:人工智能  机器学习  气动特性  栅格舵  火箭子级落区控制  技术分级
收稿时间:2020-05-13

The Application of Aerodynamic Coefficients PredictionTechnique via Artificial Intelligence Method to Rocket FirstStage Landing Area Control Project
DU Tao,XU Chen zhou,WANG Guo hui,GONG Yu kun,HE Wei,MOU Yu,LI Zhou yang,SHEN Dan,CHENG Xing,GAO Jia yi,HAN Zhong hua. The Application of Aerodynamic Coefficients PredictionTechnique via Artificial Intelligence Method to Rocket FirstStage Landing Area Control Project[J]. Journal of Astronautics, 2021, 42(1): 61-73. DOI: 10.3873/j.issn.1000-1328.2021.01.007
Authors:DU Tao  XU Chen zhou  WANG Guo hui  GONG Yu kun  HE Wei  MOU Yu  LI Zhou yang  SHEN Dan  CHENG Xing  GAO Jia yi  HAN Zhong hua
Affiliation:1. Beijing Institute of Astronautical SystemsEngineering, Beijing 100076, China; 2. National Key Laboratory of Science and  Technologyon Aerodynamic Design and Research, School of Aeronautics, NorthwesternPolytechnical University, Xi’an 710072, China
Abstract:A novel approach of predicting aerodynamic data viaartificial intelligence technique is proposed in this article. Based on windtunnel tests of partial test states, combined with several CFD results, machinelearning via Kriging model is used to predict the whole aerodynamiccharacteristics to shorten the development cycle and reduce the expensive wind tunneltests as many as possible. After solving several key technical problems such asthe selection of correlation functions, hyper parameterstraining, data verification and application of “man in loop” technique,the complete set of aerodynamic data was obtained successfully and used to thecontrol law design in the rocket first stage landing area control project withgrid fins. The correctness of the proposed method was validated by a flighttest on 26th July, 2019, which was carried out successfully for the first timein China. At the end, the grading of technology maturity degree for the artificial intelligence technique is presented toevaluate application to aerodynamic engineering design problems.
Keywords: Artificial intelligence  Machine learning  Aerodynamiccharacteristics  Grid fin  Rocket first stage landing area control  Technologyclassification   
本文献已被 CNKI 等数据库收录!
点击此处可从《宇航学报》浏览原始摘要信息
点击此处可从《宇航学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号