首页 | 本学科首页   官方微博 | 高级检索  
     

基于极限学习机的黑障区智能导航算法
引用本文:景羿铭,王融,熊智,赵耀,刘建业. 基于极限学习机的黑障区智能导航算法[J]. 导航与控制, 2020, 0(3): 21-26
作者姓名:景羿铭  王融  熊智  赵耀  刘建业
作者单位:南京航空航天大学自动化学院,南京 211106,南京航空航天大学自动化学院,南京 211106,南京航空航天大学自动化学院,南京 211106,南京航空航天大学自动化学院,南京 211106,南京航空航天大学自动化学院,南京 211106
基金项目:国家自然科学基金(编号:61533009,61673208,61703208,61873125,61533008);陆军装备部“十三五”预研(编号:30102080101);江苏省“333工程”科研资助立项(编号:BRA2016405);江苏省自然科学基金(编号:BK20181291,BK20170815,BK20170767);中央高校基本科研业务费专项(编号:NT2018108)
摘    要:
在黑障区飞行阶段中,惯性导航系统会因缺少辅助导航系统而持续累积误差,导致飞行器导航系统可靠性下降。针对这一问题,提出了一种新的基于极限学习机的黑障区智能导航算法,通过极限学习机(ELM)对GPS正常工作的导航信息进行学习。在黑障区,利用学习得到的模型对惯性导航系统进行误差补偿,较好地修正了当GPS失锁时惯性导航系统的误差,避免了因误差累积而导致的导航信息发散。仿真结果表明,该算法能够保证在GPS失锁的黑障区中导航系统输出的信息有较好的可靠性和精度,能够为接下来的姿态调整和着陆准备提供良好的基础。

关 键 词:导航系统;空天飞行器;黑障区;姿态修正;极限学习机

An Intelligent Navigation Algorithm of Blackout Area Based on Extreme Learning Machine
JING Yi-ming,WANG Rong,XIONG Zhi,ZHAO Yao and LIU Jian-ye. An Intelligent Navigation Algorithm of Blackout Area Based on Extreme Learning Machine[J]. Navigation and Control, 2020, 0(3): 21-26
Authors:JING Yi-ming  WANG Rong  XIONG Zhi  ZHAO Yao  LIU Jian-ye
Affiliation:College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 and College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106
Abstract:
In the flight phase of the blackout area, the inertial navigation system continues to accumulate errors due to the lack of auxiliary navigation system, which leads to the decrease of the reliability of the aircraft navigation system. To solve this problem, a new intelligent navigation algorithm of blackout area based on extreme learning machine(ELM) which can learn the normal navigation information of GPS, is proposed in this paper. In the blackout area, the error compensation of the inertial navigation system is carried out by using the learning model, which can better correct the error of the inertial navigation system when the GPS loses lock, and avoid the navigation information divergence caused by the error accumulation. The simulation results show that this algorithm can ensure the reliability and accuracy of the information output by the navigation system in the blackout area when GPS loses lock, it can provide a good foundation for subsequent attitude adjustment and landing preparation.
Keywords:navigation system   space vehicles   blackout area   attitude correction   extreme learning machine (ELM)
点击此处可从《导航与控制》浏览原始摘要信息
点击此处可从《导航与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号