首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microstructure, Mechanical Properties and Oxidation Resistance of Nb-22Ti-14Si-2Hf-2Al-xCr Alloys
Authors:WANG Ligang  JIA Lina  CUI Renjie  ZHENG Lijing  ZHANG Hu
Institution:* School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract:Nb-22Ti-14Si-2Hf-2Al-xCr (x=2, 6, 10, 14, 17 at%) alloys are prepared by arc-melting under argon atmosphere. Microstructural characteristics, mechanical properties and oxidation resistance of the arc-melted alloys are investigated. At 2 at% Cr content, the microstructure is composed of Nbss, Nb3Si and a small quantity of Nb5Si3, when the Cr contents increase, Nb3Si disappears. For the high Cr content (x ≥ 10 at%) alloys, besides the Nbss and Nb5Si3, Cr2Nb is also detected. With the increase of Cr content, the volume fractions of Cr2Nb and Nb5Si3 increase, while that of Nbss increases firstly and then begins to degrade when the Cr content is higher than 6 at%. For the alloy with 2 at% Cr, the room temperature fracture toughness is about 14.5 MPa·m1/2, but badly decreases to about 8.5 MPa·m1/2, when the Cr contents increase. Vickers hardness of Nbss tends to increase linearly from about 400 to 500, while that of silicides is not sensitive to Cr contents, about 950. The appearance of Cr2Nb phase significantly improves the high temperature oxidation resistance of the alloys with high Cr contents. The isothermal oxidation tests show that the oxidation kinetics of the alloys with various Cr contents follows parabolic oxidation kinetics.
Keywords:arc-melted alloys  Nb-Si alloys  microstructure  mechanical properties  oxidation resistance
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《中国航空学报》浏览原始摘要信息
点击此处可从《中国航空学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号