首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA方法对太阳活动区主要参量的分析
引用本文:沈琳, 敦金平, 张效信, 蒋勇. 基于PCA方法对太阳活动区主要参量的分析[J]. 空间科学学报, 2014, 34(6): 765-772. doi: 10.11728/cjss2014.06.765
作者姓名:沈琳  敦金平  张效信  蒋勇
作者单位:1.南京信息工程大学数学与统计学院 南京 210044;;2.中国气象局国家卫星气象中心 北京 100081
基金项目:国家自然科学基金项目,公益性行业(气象)科研专项项目,中国气象局行业专项项目
摘    要:太阳耀斑与太阳质子事件的发生通常与太阳活动区存在非常密切的关系, 对这种关系的深入分析有助于太阳耀斑和太阳质子事件预报模型的建立. 本文利用主成分分析(Principal Component Analysis, PCA)方法对1997-2010年太阳质子事件所在活动区的主要参量进行分析, 选取的参量包括黑子磁分类、 McIntosh分类、太阳黑子群面积、10.7 cm射电流量、耀斑指数、质子耀斑位置和软X射线耀斑强度. 结果得到81个太阳活动主成分得分值排序(得分值代表每个事件的强弱), 与太阳质子事件峰值流量、太阳黑子年均值以及10.7 cm射电流量年均值的对比显示相似度非常高, 表明主成分得分值一定程度上可以反映太阳活动的强弱规律.

关 键 词:PCA方法   太阳活动区   太阳质子事件产率
收稿时间:2013-11-19
修稿时间:2014-02-26

Analysis of the Major Parameters in Solar Active Regions Based on PCA Method
SHEN Lin, DUN Jinping, ZHANG Xiaoxin, JIANG Yong. Analysis of the Major Parameters in Solar Active Regions Based on PCA Method[J]. Chinese Journal of Space Science, 2014, 34(6): 765-772. doi: 10.11728/cjss2014.06.765
Authors:SHEN Lin  DUN Jinping  ZHANG Xiaoxin  JIANG Yong
Affiliation:1. College of Math and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044;;2. National Satellite Meteorology Center, China Meteorological Administration, Beijing 100081
Abstract:Solar active region has close relationship with solar flares and solar proton events. In order to better understand the complicated relations between them as well as to build a concrete foundation for the forecasting of solar flares and solar proton events, the Principal Component Analysis (PCA) method is adopted to analyze the main parameters of solar active regions during 2007-2010. The parameters selected include sunspot magnetic classification, McIntosh classification, sunspot group area, 10.7 cm radio flux, flare index, the position of proton flares and soft X-ray flare intensity. A total of 81 principal component scores are obtained and compared with the solar proton event peak flow and annual average sunspot, 10.7 cm radio flux annual average, and it is found that the similarity is very high. The statistic results show that the principal component scores can represent the strength of solar activity to some extent. 
Keywords:Principal Component Analysis (PCA) method  Solar active region  Frequency of occurrence of solar proton events
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《空间科学学报》浏览原始摘要信息
点击此处可从《空间科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号