首页 | 本学科首页   官方微博 | 高级检索  
     

基于卡尔曼滤波器及神经网络的发动机故障诊断
引用本文:姚华,单贵平,孙健国. 基于卡尔曼滤波器及神经网络的发动机故障诊断[J]. 航空动力学报, 2008, 23(6): 1111-1117
作者姓名:姚华  单贵平  孙健国
作者单位:南京航空航天大学,能源与动力学院,南京 210016;中国航空工业第一集团公司,航空动力控制系统研究所,无锡 214063;南京航空航天大学,能源与动力学院,南京 210016
摘    要:
提出了一种基于卡尔曼滤波器及神经网络的航空燃气涡轮发动机气路故障诊断的方法.该方法用卡尔曼滤波器来估计发动机可测参数的变化量,再由神经网络来映射发动机性能参数的变化量,并据此进行发动机气路故障诊断.数字仿真表明,该方法是可行的,有效的. 

关 键 词:航空、航天推进系统  航空发动机  故障诊断  卡尔曼滤波器  神经网络
收稿时间:2007-05-30
修稿时间:2007-08-20

Fault diagnosis for gas turbine engines based on Kalman filter and neural networks
YAO Hu,SHAN Gui-ping and SUN Jian-guo. Fault diagnosis for gas turbine engines based on Kalman filter and neural networks[J]. Journal of Aerospace Power, 2008, 23(6): 1111-1117
Authors:YAO Hu  SHAN Gui-ping  SUN Jian-guo
Affiliation:1.College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China2.Aviation Motor Control System Research Institute, China Aviation Industry Corporation Ⅰ, Wuxi 214063, China
Abstract:
A method for gas path fault diagnosis of gas turbine engines based on Kalman filter and neural networks was proposed.For the fault diagnosis,the Kalman filter was used to estimate the variations of measurable parameters,while neural network was applied for mapping the variations of performance parameters of gas turbine engines.Digital simulations show that the proposed method is feasible and effective.
Keywords:aerospace propulsion system  gas turbine engine  fault diagnosis  Kalman filter  neural networks
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号