首页 | 本学科首页   官方微博 | 高级检索  
     

面向单机相依任务调度的GPU并行蚁群算法
引用本文:邓向阳,张立民,刘凯,黄晓冬. 面向单机相依任务调度的GPU并行蚁群算法[J]. 海军航空工程学院学报, 2012, 27(4): 469-472
作者姓名:邓向阳  张立民  刘凯  黄晓冬
作者单位:1. 海军航空工程学院电子信息工程系,山东 烟台 264001
2. 海军航空工程学院科研部,山东 烟台 264001
基金项目:国家部委基金资助项目(51304030205)
摘    要:
蚁群算法是一种具有高度并行特征的群智能算法,串行实现过程中具有收敛速度慢的特点,在将其应用到相依任务序列的单机调度问题中时,以任务在不同作业序下的完成时间为基础,建立了单机调度问题的TSP模型。以任务完成时间最优化为目的,实现了一种求解相依任务单机调度的改进蚁群算法,并基于GPU对其进行了并行化设计。实验表明该算法能够完成相依任务的调度处理,通过并行化得到了较高的加速比。

关 键 词:蚁群算法  并行计算  相依任务调度  图形处理器  单机调度

A GPU-Based Parallel ACO Applied in Dependent Task Scheduling on Single Machine
DENG Xiang-yang,ZHANG Li-min,LIU Kai and HUANG Xiao-dong. A GPU-Based Parallel ACO Applied in Dependent Task Scheduling on Single Machine[J]. Journal of Naval Aeronautical Engineering Institute, 2012, 27(4): 469-472
Authors:DENG Xiang-yang  ZHANG Li-min  LIU Kai  HUANG Xiao-dong
Affiliation:b (Naval Aeronautical and Astronautical University a. Department of Electronic and Information Engineering; b. Department of Scientific Research, Yantai Shandong 264001, China)
Abstract:
Ant Colony Optimization (ACO) is a highly parallel swarm intelligence algorithm, and is convergent slowly when implemented serially. In solving the problem of dependent task scheduling on single machine (DTSSM), a traveling salesman problem (TSP) model was constructed based on the processing order of tasks, and the time costs of different processing order were mapped to a fitness function. For shortest time consumption, an improved ACO for DTSSM problem was presented and was optimized for parallelizing on a GPU. Tests showed that the algorithm could schedule the dependent tasks, and achieved a good acceleration ratio by parallelization
Keywords:ant colony optimization  parallel computation  dependent task scheduling  GPU  single machine scheduling
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《海军航空工程学院学报》浏览原始摘要信息
点击此处可从《海军航空工程学院学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号