首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Localization of Particle Acceleration Sites in Solar Flares and CMES
Authors:Markus J Aschwanden
Institution:1. Solar and Astrophysics Lab., Lockheed Martin ATC, 3251 Hanover St., Palo Alto, CA, 94304, USA
Abstract:We review the particular aspect of determining particle acceleration sites in solar flares and coronal mass ejections (CMEs). Depending on the magnetic field configuration at the particle acceleration site, distinctly different radiation signatures are produced: (1) If charged particles are accelerated along compact closed magnetic field lines, they precipitate to the solar chromosphere and produce hard X-rays, gamma rays, soft X-rays, and EUV emission; (2) if they are injected into large-scale closed magnetic field structures, they remain temporarily confined (or trapped) and produce gyrosynchrotron emission in radio and bremsstrahlung in soft X-rays; (3) if they are accelerated along open field lines they produce beam-driven plasma emission with a metric starting frequency; and (4) if they are accelerated in a propagating CME shock, they can escape into interplanetary space and produce beam-driven plasma emission with a decametric starting frequency. The latter two groups of accelerated particles can be geo-effective if suitably connected to the solar west side. Particle acceleration sites can often be localized by modeling the magnetic topology from images in different wavelengths and by measuring the particle velocity dispersion from time-of-flight delays.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号