Biological nitrogen fixation under primordial Martian partial pressures of dinitrogen. |
| |
Authors: | J M Klingler R L Mancinelli M R White |
| |
Affiliation: | NASA-Ames Research Center, Solar System Exploration, Moffett Field, CA 94035, USA. |
| |
Abstract: | Early Earth and early Mars were similar enough such that past geochemical and climatic conditions on Mars may have also been favorable for the origin of life. However, one of the most striking differences between the two planets was the low partial pressure of dinitrogen (pN2) on early Mars (18 mb). On Earth, nitrogen is a key biological element and in many ecosystems the low availability of fixed nitrogen compounds is the main factor limiting growth. Biological fixation of dinitrogen on Earth is a crucial source of fixed nitrogen. Could the low availability of dinitrogen in the primordial Martian atmosphere have prevented the existence, or evolution of Martian microbiota? Azotobacter vinelandii and Azomonas agilis were grown in nitrogen free synthetic medium under various partial pressures of dinitrogen ranging from 780-0 mb (total atmosphere=1 bar). Below 400 mb the biomass, cell number, and growth rate decreased with decreasing pN2. Both microorganisms were capable of growth at a pN2 as low as 5 mb, but no growth was observed at a pN2 < or = 1 mb. The data appear to indicate that biological nitrogen fixation could have occurred on primordial Mars (pN2=18 mb) making it possible for a biotic system to have played a role in the Martian nitrogen cycle. It is possible that nitrogen may have played a key role in the early evolution of life on Mars, and that later a lack of available nitrogen on that planet (currently, pN2=0.2 mb) may have been involved in its subsequent extinction. |
| |
Keywords: | |
|
|