首页 | 本学科首页   官方微博 | 高级检索  
     检索      

全速域可变形飞行器气动布局设计及试验研究
引用本文:焦子涵,付秋军,邓帆,陈林,范宇,尘军.全速域可变形飞行器气动布局设计及试验研究[J].固体火箭技术,2017,40(5).
作者姓名:焦子涵  付秋军  邓帆  陈林  范宇  尘军
作者单位:1. 中国运载火箭技术研究院 空间物理重点实验室,北京,100076;2. 中国运载火箭技术研究院 空间物理重点实验室,北京 100076;谢菲尔德大学,机械工程学院,谢菲尔德 S13JD;3. 中国运载火箭技术研究院,北京,100076
基金项目:工信部国家重大科学仪器设备开发专项
摘    要:为了解决大空域、宽速域水平起降可重复使用飞行器的气动适应性问题,设计了一种满足高超声速巡航飞行性能的飞行器,为解决该种飞行器地面水平起飞和高速巡航飞行气动性能矛盾的问题,提出了两种变形布局方式——伸缩翼布局和翻转翼布局。通过数值手段比较分析了两种变形布局的低速气动特性,并通过风洞试验对其性能进行了验证。结果表明,在增加相同机翼面积时,伸缩翼在起飞状态增升效率为68%,同时阻力增加35%;翻转翼在起飞状态增升效率为42%,阻力增加15%;伸缩翼布局比翻转翼布局的起飞升力大16%,阻力大20%,伸缩翼布局具有明显的升力优势,说明亚声速状态增加机翼展弦比是增升的有效手段,但同时也带来阻力的增加;鸭翼具有显著的增升效果,起飞状态增升12.8%,同时阻力降低1.4%,纵向压心系数绝对值前移0.48%,有效缓解了起飞状态升力和纵向稳定性的问题。

关 键 词:全速域  可变形飞行器  伸缩翼  翻转翼  鸭翼  气动布局

Aerodynamic configuration design and experimental study of all-speed morphing aircraft
JIAO Zi-han,FU Qiu-jun,DENG Fan,CHEN Lin,FAN Yu,CHEN Jun.Aerodynamic configuration design and experimental study of all-speed morphing aircraft[J].Journal of Solid Rocket Technology,2017,40(5).
Authors:JIAO Zi-han  FU Qiu-jun  DENG Fan  CHEN Lin  FAN Yu  CHEN Jun
Abstract:Aerodynamic adaptability problem is the primary issues for large-space, wide speed range, horizontal take-off and landing reusable launch vehicle. An aerodynamic configuration was proposed, which satisfies the requirement of supersonic and hypersonic cruise. In order to solve the horizontal take-off problem and contradictions of high and low speed aerodynamic char-acteristics, two morphing configuration ( telescopic wing configuration and overturning wing configuration) were proposed. The per-formance of low-speed aerodynamic characteristics were compared using numerical simulation, and verified by wind tunnel experi-ments. While increasing the same wing area, the following conclusion were summarized. Telescopic wing increases the lift coefficient by 68% at take-off status, while increases the drag coefficient by 35%. Overturning wing increases the lift coefficient by 42% at take-off status, while increases the drag coefficient by 15%. The lift coefficient of telescopic wing is 16% higher than overturning wing at a take-off status, while the drag coefficient is 20% greater. The telescopic wing configuration has obviously advantage at im-proving the lift coefficient. Increasing the wing aspect ratio is one of the effective methods to improve the lift at subsonic speed, and meanwhile the drag is increased. Canards has a significantly effect on increasing lift. Lift is increased by 12.8% at take-off status, while drag is reduced by 1.4%, and the longitudinal pressure center is moved forward by 0.48%, so the lift coefficient and longitu-dinal stability problems at take-off status are relieved effectively.
Keywords:all speeds  morphing aircraft  telescopic wing  overturning wing  canard  aerodynamic configuration
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号