首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF网络的航空发动机辨识模型
引用本文:丁凯峰,樊思齐. 基于RBF网络的航空发动机辨识模型[J]. 航空动力学报, 2000, 15(2): 205-208
作者姓名:丁凯峰  樊思齐
作者单位:西北工业大学709教研室,陕西,西安,710072;西北工业大学709教研室,陕西,西安,710072
摘    要:利用实测到的发动机飞行试验数据作为学习样本, 采用径向基函数 (RBF)神经网络建立了发动机的辨识模型。利用这种方法对不同飞行高度发动机的参数进行了辨识, 并与几种 BP网络进行了比较。研究结果表明: 这种方法具有训练时间短、学习速度快、辨识精度高等优点。 

关 键 词:航空发动机  数学模型  神经网络  辨识
收稿时间:1999-05-21
修稿时间:1999-05-21

An Identification Model of Aeroengine Based on the RBF Network
Ding Kaifeng and Fan Siqi. An Identification Model of Aeroengine Based on the RBF Network[J]. Journal of Aerospace Power, 2000, 15(2): 205-208
Authors:Ding Kaifeng and Fan Siqi
Affiliation:7th Dept.Northwest Polytechnic University,Xi'an 710072,China
Abstract:The identification model of aeroengine based on the Radial Basis Function network is set up by using the measured flight tests data as learning stylebook.The parameters of engine are identified at different flight heights by this method.The network is also compared with several Back Propagation networks.The results show that this method has the advantage of faster learning rate,higher identifying precision and better real time ability.It can be used on the engine on line identification.
Keywords:aeroengine  mathematical model  Neural network  identification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号