首页 | 本学科首页   官方微博 | 高级检索  
     

基于 LSTM的飞控系统状态监控
作者姓名:王凤芹  高龙  李瑛  耿宝亮
作者单位:海军航空大学,山东烟台 264001
摘    要:监测飞控系统状态参数是保证无人机飞行安全的重要手段。针对无人机飞控系统的组成特点和飞行控制律,设计并构建了基于长短期记忆网络(Long Short Term Memory Network,LSTM)的飞控系统状态监控模型。首先,利用无人机历史飞参数据训练模型,建立输入飞参数据与状态参数的回归映射关系;然后,利用训练好的网络模型,实时预测飞控系统的状态参数,通过对比实测值与预测值之间的差异,实现飞控系统的状态监控。选取无人机飞参数据进行实验,基于 LSTM的算法比反向传播神经网络(BPNN)、支持向量机(SVM)预测精度高,MSE平均值分别低 0.01和 0.26,MAE平均值分别低 0.05和 0.12。结果表明,所提出的方法能够有效监控飞控系统,为无人机飞行管理决策提供数据支持。

关 键 词:飞控系统状态监控  无人机飞行安全  状态监控算法  深度学习  飞参数据分析
点击此处可从《海军航空工程学院学报》浏览原始摘要信息
点击此处可从《海军航空工程学院学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号