首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cost-driven design of small satellite remote sensing systems*
Authors:Fouquet  Marc  Ward  Jeff
Abstract:Earth remote sensing (alongside communications) is one of the key application of Earth-orbiting satellites. Civilian satellites in the LANDSAT and SPOT series provide Earth images which have been used for a vast spectrum of applications in agriculture, meteorology, hydrology, urban planning and geology, to name but a few. In the defence sector, satellite remote sensing systems are a critical tool in strategic and tactical planning – for the countries which can afford them. To date, remote sensing satellites have fallen into one of these two categories: military missions driven by the requirement for very high resolution and orbital agility; and multipurpose civil satellites using general purpose sensors to serve a diverse community of end users. For military-style missions, the drive to high resolution sets the requirements for optics, attitude control and downlink data bandwidth. For civil missions, the requirement to satisfy multiple, diverse user applications forces compromises on spectral band and orbit selection. Although there are exceptions, many small satellite remote sensing missions carry on in this tradition, concentrating on ultra high resolution products for multiple user communities. This results in satellites costing on the order of US $100 M, not optimised for any particular application. This paper explores an alternative path to satellite remote sensing, aiming simultaneously to reduce cost and to optimise imaging products for specific applications. By decreasing the cost of the remote sensing satellite system to a critical point, it becomes appropriate to optimise the sensor's spectral and temporal characteristics to fit the requirements of a small, specialised user base. The critical engineering trade-off faced in a cost driven mission is how to reduce mission cost while still delivering a useful product to the selected user. At the Surrey Space Centre, we have pursued an engineering path using two dimensional CCD array sensors, commercial off-the-shelf lenses and gravity-gradient stabilised microsatellites. In spite of the inherent limitations of such systems, recent successes with the Thai Microsatellite Company's Thai-Phutt satellite show that a system costing in the region of US $3 million, can approach the spectral and spatial characteristics of LANDSAT. Surrey's UoSAT-12 minisatellite (to be launched April, 1999) will further develop this cost-driven approach to provide 10 m panchromatic resolution and 30 m multi-spectral resolution. This paper describes the Thai-Phutt and UoSAT-12 imaging systems, explaining the engineering methods and trade-offs. Although Surrey is presently the only centre presently pursuing such implementations, our paper shows that they deserve wider consideration.
Keywords:CCD cameras  microsatellites  minisatellite  remote sensing  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号