首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的ADS-B异常数据检测模型
引用本文:丁建立,邹云开,王静,王怀超. 基于深度学习的ADS-B异常数据检测模型[J]. 航空学报, 2019, 40(12): 323220-323220. DOI: 10.7527/S1000-6893.2019.23220
作者姓名:丁建立  邹云开  王静  王怀超
作者单位:中国民航大学计算机学院,天津 300300;中国民航大学中欧航空工程师学院,天津 300300;中国民航大学中欧航空工程师学院,天津,300300;中国民航大学计算机学院,天津,300300
基金项目:国家自然科学基金民航联合基金(U1833114);民航安全能力项目(AADSA0018)
摘    要:
广播式自动相关监视(ADS-B)是下一代空中交通运输系统的重要组成部分,是新航行系统中非常重要的通信和监视技术,但其协议没有提供相关的信息认证和数据加密,因此极其容易受到欺骗干扰的影响。针对ADS-B报文数据特点,采用深度学习的seq2seq模型对ADS-B报文数据进行重构,通过重构误差来检测异常,并对数据进行特征扩展,使模型能更好的捕捉数据的时间依赖性。实验结果表明,所采用的方法优于传统的机器学习方法,且在数据特征扩展后,模型检测效果提升。相比于现有的欺骗干扰检测方法,该方法不需要改变ADS-B系统的协议,也不需要额外的节点或传感器参与,具有一定的适应性和灵活性。

关 键 词:广播式自动相关监视(ADS-B)  安全性  异常检测  深度学习  seq2seq模型
收稿时间:2019-06-14
修稿时间:2019-08-11

ADS-B anomaly data detection model based on deep learning
DING Jianli,ZOU Yunkai,WANG Jing,WANG Huaichao. ADS-B anomaly data detection model based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323220-323220. DOI: 10.7527/S1000-6893.2019.23220
Authors:DING Jianli  ZOU Yunkai  WANG Jing  WANG Huaichao
Affiliation:1. College of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China;2. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
Abstract:
Automatic Dependent Surveillance-Broadcast (ADS-B) is an important part of the next generation air transportation system. It is a critical communication and monitoring technology in the new navigation system, but its protocol does not provide relevant authentication and data encryption, so it is extremely vulnerable to various spoofing attack. Based on the data characteristics, this paper uses the deep learning seq2seq model to reconstruct the ADS-B time series, and the reconstruction error can detect the anomalous ADS-B messages. Extending the feature space of time series enables the model to better capture the time dependence to further improve the effect of anomaly detection. The experimental results show that the proposed method is superior to traditional machine learning methods and time series enrichment can improve detection results. Compared with the existing spoofing attack detection method, the proposed method does not need to change the ADS-B protocol and does not require additional participating nodes or sensors, and has certain adaptability and flexibility.
Keywords:Automatic Dependent Surveillance-Broadcast (ADS-B)  security  anomaly detection  deep learning  seq2seq model  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号