首页 | 本学科首页   官方微博 | 高级检索  
     

基于隶属度和LMK-ELM的航空电子部件诊断方法
引用本文:朱敏,许爱强,李睿峰,戴金玲. 基于隶属度和LMK-ELM的航空电子部件诊断方法[J]. 航空学报, 2019, 40(12): 323277-323277. DOI: 10.7527/S1000-6893.2019.23277
作者姓名:朱敏  许爱强  李睿峰  戴金玲
作者单位:海军航空大学,烟台,264001
基金项目:国家自然科学基金(11802338);山东省自然科学基金(ZR2017MF036)
摘    要:
为提高航空电子部件模块级故障诊断精度,提出一种新的面向"软聚类"的局部多核学习(LMKL)-超限学习机(ELM)离线诊断方法。通过引入模糊C均值聚类对样本空间进行模糊划分,挖掘聚类内部多样性的同时,实现了对过学习的抑制;将模糊划分产生的隶属度信息融入LMKL-ELM的优化过程,运用基于初始-对偶混合优化问题的三步优化策略克服了局部核权重二次非凸的问题,在l1-范数与l2-范数约束下分别给出了相应的更新方法。将所提方法应用于某型机前端接收机,结果表明:与4种流行的多核诊断方法相比,该方法可有效避免漏警、抑制虚警,在l1-范数和l2-范数约束下,其诊断精度比其他方法的平均值分别提升了4.09%和5.13%。

关 键 词:超限学习机  局部多核学习  模糊C均值聚类  故障诊断  航空电子
收稿时间:2019-07-09
修稿时间:2019-08-23

Diagnosis method for avionics based on membership and LMK-ELM
ZHU Min,XU Aiqiang,LI Ruifeng,DAI Jinling. Diagnosis method for avionics based on membership and LMK-ELM[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 323277-323277. DOI: 10.7527/S1000-6893.2019.23277
Authors:ZHU Min  XU Aiqiang  LI Ruifeng  DAI Jinling
Affiliation:Naval Aviation University, Yantai 264001, China
Abstract:
To improve the accuracy of module-level fault diagnosis for avionics, a new off-line diagnosis method based on soft-clustering-sensitive Localized Multi-Kernel Learning (LMKL) and Extreme Learning Machine (ELM) is proposed. By introducing fuzzy C-means clustering to partition the sample space, the over-learning is suppressed while mining the diversity within the cluster. The membership information generated by the fuzzy partition is integrated into the optimization process of LMKL-ELM. A three-step optimization strategy based on the initial-dual hybrid optimization problem is used to overcome the quadratic non-convexity of the local kernel weights. The corresponding updating methods for these weights are given under l1-norm constraint and l2-norm constraint. The proposed method is applied to the front-end receiver. Compared with four popular multi-kernel diagnostic algorithms, the results show that the proposed method can effectively avoid missing alarm and suppress false alarm. The diagnostic accuracy is 4.09% higher in l1-norm and 5.13% higher in l2-norm than the average of other methods.
Keywords:extreme learning machine  localized multiple kernel learning  fuzzy C-means clustering  fault diagnosis  avionic  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号