首页 | 本学科首页   官方微博 | 高级检索  
     

煤基喷气燃料代用组分神经网络混合构建方法
引用本文:刘振涛,许全宏,张弛,霍伟业,林宇震. 煤基喷气燃料代用组分神经网络混合构建方法[J]. 航空动力学报, 2016, 31(11): 2652-2658. DOI: 10.13224/j.cnki.jasp.2016.11.012
作者姓名:刘振涛  许全宏  张弛  霍伟业  林宇震
作者单位:1. 北京航空航天大学 能源与动力工程学院 航空发动机气动热力国家级重点试验室, 北京 100191;
基金项目:国家自然科学基金(51306010);北京市自然科学基金(3152020)
摘    要:为了建立航空燃料的喷雾模型,用于高保真液雾燃烧数值模拟,提出了基于人工神经网络混合模型的煤基喷气燃料代用组分构建方法.基于这一构建方法,重点针对煤基喷气燃料的雾化特性,利用多组分混合燃料的理化性质数据库对神经网络进行训练,获得了混合燃料理化性质隐式预测模型,结合随机投点优化方法,构建出能够很好地模拟煤基喷气燃料目标理化性质的代用组分.结果表明:该代用组分包含了5种碳氢化合物成分,摩尔分数为11.46%正癸烷、23.29%正十二烷、49.87%正十四烷、6.66%异辛烷和8.72%甲基环己烷.通过雾化特性实验,验证了代用组分对真实燃料雾化性能的模拟效果.该代用组分构建方法可以较好地解决混合燃料模拟过程中的非线性问题,通过改变目标理化性质可构建出相应代用组分. 

关 键 词:煤基喷气燃料   代用组分   神经网络   优化   雾化
收稿时间:2016-02-19

Surrogate formulation methodology of coal-based jet fuel based on neural network mixing model
LIU Zhen-tao,XU Quan-hong,ZHANG Chi,HUO Wei-ye and LIN Yu-zhen. Surrogate formulation methodology of coal-based jet fuel based on neural network mixing model[J]. Journal of Aerospace Power, 2016, 31(11): 2652-2658. DOI: 10.13224/j.cnki.jasp.2016.11.012
Authors:LIU Zhen-tao  XU Quan-hong  ZHANG Chi  HUO Wei-ye  LIN Yu-zhen
Affiliation:1. National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics, School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;2. Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100191, China
Abstract:In order to build spray model of aviation fuel for the high-fidelity numerical simulation of spray combustion, a surrogate formulation methodology was proposed for coal-based jet fuel based on artificial neural network mixture model. An implicit prediction model was developed on the blended physico-chemical properties using the multi-component fuel properties data set to train the neural network. And then the surrogate of coal-based jet fuel was formulated from the neural network mixing model by the stochastic points'' optimization method, which could well simulate the target physico-chemical properties focusing on its atomization.Result shows that the surrogate is composed of 5 hydrocarbons(n-decane,n-dodecane,n-tetradecane,iso-octane and methylcyclohexane),their mole fraction are 11.46%, 23.29%,49.87%,6.66% and 8.72%, respectively. Compared with the real fuel, the atomization simulation of the surrogate was evaluated by experiments. This surrogate formulation methodology can solve the nonlinear issue in the mixing process, and formulate different surrogates for various requirements.
Keywords:coal-based jet fuel  surrogate  neural network  optimization  atomization
本文献已被 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号