首页 | 本学科首页   官方微博 | 高级检索  
     

基于经验模态分解的非平稳信号趋势项消除
引用本文:朱学锋,韩宁. 基于经验模态分解的非平稳信号趋势项消除[J]. 飞行器测控学报, 2012, 31(1): 65-70
作者姓名:朱学锋  韩宁
作者单位:1.92941部队,辽宁葫芦岛,125000;2.92941部队,辽宁葫芦岛,125000
摘    要:归纳概括了传统的趋势项消除方法,指出各类方法的优点和不足,提出了基于EMD(经验模态分解)的非线性、非平稳信号剔除方法.该方法通过数据驱动自适应构造基底函数IMF(本征模函数),再由若干阶IMF分量和剩余分量的重组获得趋势项,避免了对复杂趋势项的数学建模和分析计算.仿真结果表明,EMD法能够有效地提取和剔除非平稳信号中的复杂趋势项成分,获得平滑的趋向性信号.

关 键 词:趋势  非平稳信号  经验模态分解  小波变换

Removal of Non-Stationary Signal Trend Items by Empirical Mode Decomposition
ZHU Xuefeng,HAN Ning. Removal of Non-Stationary Signal Trend Items by Empirical Mode Decomposition[J]. Journal of Spacecraft TT&C Technology, 2012, 31(1): 65-70
Authors:ZHU Xuefeng  HAN Ning
Affiliation:(PLA Unit 92941,Huludao,Liaoning Province 125000)
Abstract:Following an overview of the strengths and weaknesses of conventional trend item-removal methods,this paper puts forward a method based on EMD(Empirical Mode Decomposition) to remove the trend items from nonlinear and non-stationary signals.The method defines adaptive IMF(Intrinsic Mode Function) function by data-driving and reconstructs trend items by some IMFs and residual components,and makes mathematical modeling and computing unnecessary for complex trend items.Simulation and test results show that the method effectively picks up and removes complex trend items from non-stationary signals and obtains smooth tendency signals.
Keywords:Trend Item  Non-Stationary Signal  Empirical Mode Decomposition  Wavelet Transform
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号